

UNIVERSITY

TILBURG +

Posthoc Disentanglement of Textual and Acoustic Features in Self-Supervised Speech Encoders

Hosein Mohebbi, Grzegorz Chrupała, Willem Zuidema, Afra Alishahi, Ivan Titov

Motivation

In speech, both content (what can be transcribed as text) and acoustic features could contribute to a target task.

We propose a **cascaded framework** based on Information Bottleneck that disentangles the **textual** and **acoustic** features of speech representations while satisfying the following desiderata:

- Post-hoc: The approach must disentangle representations learned by pre-existing, pre-trained models, with minimal data or computation.
- ✓ Model-agnostic: The approach must be general and applicable to models with varying architectures, sizes, and learning objectives.
- ✓ Task-relevant: The approach should allow for acoustic features to emerge based on their relevance to a target downstream task, rather than being based on pre-specified static components (such as pitch, timbre, and speaker).

Evaluation of disentanglement

We find the representations are almost perfectly disentangled from each other:

- Textual representations predict transcriptions as well as the original speech representations but fail at predicting acoustic features (Intensity, Pitch, Gender, and Speaker Identification).
- Acoustic representations excel at predicting acoustic features but perform randomly at transcriptions.

Layerwise Emotion Contribution

Using probing analysis, our framework reveals something we couldn't show without disentangling: Through layers, the acoustic contribution to emotion recognition significantly decreases when models are fine-tuned on ASR, while the textual contribution increases.

Disentangled Feature Attribution

- The proposed disentanglement framework can serve as a feature attribution method: it allows us to determine whether a frame's contribution is textual or acoustic.
- Acoustic attention captures peaks and valleys in acoustic features, while textual attention focuses on word polarity. Both have higher agreement with features than Integrated Gradient scores.

Reproducibility

The textual encoder learned in stage 1 is independent of the target task and can be applied to new downstream tasks; try it out on GitHub:

Metric

