

Abir Harrasse*, Florent Draye*, Bernhard Schölkopf, Zhijing Jin

layers, contrary to prior work, also retain many

- Are models truly English-centric, as prior work suggests?
- Could this explain the underperformance of languages like Arabic?
- Is it possible to **boost** low-resource languages without finetuning?

The Challenge: Fairness and Access in Multilingual LLMs

- LLMs power global applications, but research mostly focuses on English.
- Many languages, like Arabic, face lower accuracy and bias, risking fairness and access.

Recovering Activation Space Multilinguality with SAEs

multilingual features and therefore not Englishcentric.

Steering Shifts Arabic Representations into Multilingual Region

- We use the IOI task as a **case study** to improve Arabic performance (starting at **50%**).
- By steering Arabic activations using IOI activations from another language (e.g., French), we boost performance.
- To do this, we isolate an IOI-specific steering vector by:

$$v_{\text{raw}} = v_{\text{lang}} + v_{\text{IOI}} + \epsilon$$

 $v_{\text{steer}} = v_{\text{raw}} - v_{\text{lang}}$

- We train **Multilingual Sparse Autoencoders** (SAEs) on the activations of layers 5, 13 and 21 of Gemma2-2B.
- We measure the **language entropy** of each SAE feature to analyze language mixing at each layer.

$$H(f) = -\sum_{l=1}^{L} p_l(f) \log p_l(f),$$

Where:

$$p_l(f) = \frac{A_l(f)}{\sum_{l'} A_{l'}(f)}, \quad A_l(f) = \sum_t a_{t,f}^{(l)},$$

And L is the number of languages and $a_{t,f}^{(l)}$ is the activation of feature at token t of language l.

Looking Ahead

- How does the model use multilingual features internally?
- How do circuits vary with training data and input language?
- Is there cross-lingual generalization from highresource to low-resource languages? If not, can it be induced as a general
- capability rather than just for specific tasks?

