

Joint Localization and Activation Editing for Low-Resource Fine-Tuning

ICNL International Conference On Machine Learning

Wen Lai^{1,2}, Ivan Titov^{3,4}, Alexander Fraser^{1,2}

Munich Center for Machine Learning

Technical University of Munich² Munich Center for Machine Learning ³University of Edinburgh⁴University of Amsterdam

PaperCodeBlogContact:wen.lai@tum.de

Highlight

- We introduce JoLA, a parameter-efficient fine-tuning method for low-resource settings. ⇒ Fewer parameters than LoRA, works with just 200 samples.
- Main Idea: Activation editing instead of weight updates (like LoRA), dynamicly selecting intervention components and strategy.
- Easy to use: 3 lines of code, fast training.

Background

- **PEFT methods** (e.g., LoRA) are efficient but struggle in **low-resource settings**.
- Activation editing offers a lightweight alternative by modifying intermediate activations—ideal for small datasets.
- Key challenges remain:
 - What to edit? Bias terms[1], MLP outputs[2], hidden states[3], or attention heads[4]?
 - How to edit? Additive, multiplicative, or hybrid?
 - Task Dependence: Editing strategies vary by task and dataset.

Motivation

- Component Selection: Editing multiple components often leads to overfitting, while attention heads are more effective targets. (See section 3.1)
- Intervention Strategy: Bias offsets (additive) consistently contribute more to performance improvements than scaling (multiplicative). (See section 3.1)
- Performance on low-resource settings: Relies on fixed heuristics or manual selection, with unstable performance in low-resource settings. (See Appendix C / F.3)

Method

④ Training Objectives:

$$L(\mathbf{m}, \mathbf{a}, \phi) = L_{xent}(\mathbf{m}, \mathbf{a}) + \lambda L_C(\phi)$$

③ Gate: Standard concrete distributions (**No Input!**).

• $L_{xent}(\cdot)$ is the standard cross-entropy loss, $L_C(\phi)$ is the L_0 regularizer defined as:

$$\begin{aligned} \mathcal{L}_{C}(\phi) &= \sum_{l,i} \left(1 - P(g_{a}^{(l,i)} = 0 \mid \phi_{a}^{(l,i)}) \right) \\ &+ 1 - P(g_{m}^{(l,i)} = 0 \mid \phi_{m}^{(l,i)}) \end{aligned}$$

- $L_C(\phi)$ regularizes the number of open gates, encouraging the model to close gates as training progresses.
- Most gates are closed at convergence, i.e., only a few interventions are applied.

Experiments & Results

Llama-3.1-8B-Instruct 75 Reasoning Understanding Generation	Main Results:							Different Data Size: SIQA (Small Data) SIQA (Large Data)		
Reasoning Understanding Generation	Llama-3.1-8B-Instruct						75 -		77 -	
		Reasoning	Understanding		Generatio	n				
$\mathbf{ACC} \uparrow \qquad \mathbf{ACC} \uparrow \qquad \mathbf{BLEU} \uparrow \mathbf{ROUGE-L} \uparrow \mathbf{BERTScore} \uparrow \qquad 72 \qquad $		$\mathbf{ACC}\uparrow$	$\mathbf{ACC}\uparrow$	$\mathbf{BLEU} \uparrow$	ROUGE-L \uparrow	BERTScore \uparrow	72 -		76 -	
zero_shot 53.70 40.00 12.56 36.70 77.23 69	ero_shot	53.70	40.00	12.56	36.70	77.23	69 -			
LoRA 66.58 42.07 13.27 36.97 77.74	oRA	66.58	42.07	13.27	36.97	77.74				
BitFit 63.05 35.02 9.25 28.81 74.83	BitFit	63.05	35.02	9.25	28.81	74.83	66 -		75 -	

