

Identifiable Steering via Sparse Autoencoding of Multi-Concept Shifts

Shruti Joshi, Andrea Dittadi, Sébastien Lachapelle, Dhanya Sridhar

Motivation and Setup

Informal Theorem Statement

SSAEs learn the concept shift vectors δ_{V}^{c} and the linear encoder-decoder pair (r, q) up to permutation and scaling of the true solution, where columns of the decoder denote steering vectors for the concepts in c_{V} .

Unsupervised, but at least theoretically related to

Cosine Similarity $(\tilde{\mathbf{z}}, \circ)$ (Higher is better)

true concepts via trivial transformations

BINARY(2, 2)

 $\tilde{\mathbf{z}}_{\mathrm{MD}}$

Causal Representation Learning \longleftrightarrow Mechanistic interpretability; propose a method that disentangles the latent concepts encoded in LLM activations

Linear Representation Hypothesis backbone treats activations as a linear mix of concepts

Provable disentanglement with weak supervision
— uses multi-concept contrast pairs, far cheaper
than single-concept perturbations

Exhibits strong **OOD** performance

Separates strongly **correlated** concepts

Mean Correlation Coefficients (MCC) between the decoders of any two learned models

	SSAE	aff
LANG(1,1)	0.995 ± 0.001	0.985 ± 0.004
GENDER(1, 1)	0.993 ± 0.000	0.961 ± 0.000
BINARY(2,2)	0.991 ± 0.001	0.936 ± 0.000
$\operatorname{CORR}(2,1)$	0.991 ± 0.001	0.928 ± 0.077
CAT(135, 3)	0.906 ± 0.022	0.661 ± 0.019
TruthfulQA	0.952 ± 0.006	0.885 ± 0.006
	SSAE	aff
SYNTH(3, 2)	0.999 ± 0.0001	0.873 ± 0.0561
synth(4,3)	0.999 ± 0.0011	0.835 ± 0.0097
SYNTH(10, 7)	0.993 ± 0.0005	0.769 ± 0.0103

Reproducible across hyper-parameters

Learns steering from data with *multiple unknown concept* variations

LANG(1, 1)

 $\begin{array}{c|c} \mathbf{Steering} \ \mathbf{Method}(\circ) \\ \hline & & \\ \hline & & \\ \hline & & \\ \mathbf{\tilde{z}_{aff}} \\ \hline & & \\ \hline \end{array}$

 $\tilde{\mathbf{z}}_{PCA}$

GENDER(1, 1)

0.9

0.8

0.7

0.6

0.5

 $\mathbf{0.4}$

0.3

 0.2^{-1}

0.1

0.0

CORR(2, 1)

SAMSUNG

TruthfulQA(1, 1)

CAT(135, 3)

Advanced Institute of Technology Al Lab Montreal

