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Motivation: The importance of positional encoding choice for transformer generalization
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* Choice of positional encodings (PE) in trans-
formers have been shown to be critical for 
learning and generalization.

* Most investigations into PE have been tailored 
towards 1D string-based tasks, such as arith-
metic or context-free grammars using pre-spec-
ified PEs (e.g., ROPE, or absolute PEs)

* Here we investigate the importance on a suite 
of tasks with sequence data organized in 
higher dimensions (>greater than 1D sequenc-
es)

* Specifically, we study the conditions by which 
we can learn interpretable positional encod-
ings, and study how they impact generalization

* Inspired by recent work on rich and lazy repre-
sentation learning, we explored how initializa-
tion of a learnable PE parameter influences in-
terpretability and generalization in transformers

Experiment 1: Learning interpretable positional encodings in the Latin Squares Task

Experiment 2: Learnable PEs recover interpretable network clusters in network simulation

Experiment 3: Learnable PEs recover known network clusters in human brain fMRI data

Intuition from a simple 2D task: The Latin Squares Task (simplified Sudoku)

Model manipulation

Replace traditional PEs 
with a learnable parameter 

initialized from N(0,σI), 
and manipulate σ

Generalization
Enhanced test set generalization when training a learnable PE 

embedding initialized from small σ 
Large σ: Lazy learning   |   Small σ: Rich learning 

Interpretability analyses
 Enhanced interpretability of PE embeddings when using a 

learnable PE embedding initialized with small σ
Learned PE embedding mimics a 2D grid structure, consistent with the LST input

Experimental setup: Simulate nonlinear autoregressive network simulation

15 nodes, 3 networks Masked pretraining

Interpretability analyses: Richly learned PE embeddings recover network clusters

* We measured the cosine distance of 
learned PE embeddings across a 
range of PE models

* Small σ models (e.g., learn-0.1) accu-
rately recovered the distance be-
tween PE embeddings

* Large σ models (e.g., learn-1.0) did 
not

* Models with random and 1d-fixed PEs 
also did not exhibit network structure

Experimental setup: Predicting whole-brain activity from masked inputs Interpretability analyses: Richly learned PEs recover known functional network clusters
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* We compute the distances between 
learned PEs in transformers 

* PEs learned in the rich regime (small σ) 
recover network structure (modularity) 

Conclusion
* We extend prior transformer generalization studies from 1D sequences to n-dimensional sequences, which requires positional encoding 

schemes for higher dimensions.
* We demonstrate that rich representation learning of positional encodings – which is induced by initializing parameters with a small 

norm – learns interpretable embeddings that also enhance generalization   


