

Learning interpretable positional encodings in transformers depends on initialization

Takuya Ito¹, Luca Cocchi, Tim Klinger, Parikshit Ram, Murray Campbell, Luke J. Hearne arXiv ¹Mathematics of Computation, IBM Research, ²QIMR Berghofer Medical Research Institute, QLD, Australia E-mail: taku.ito1@gmail.com

Motivation: The importance of positional encoding choice for transformer generalization

- * Choice of positional encodings (PE) in transformers have been shown to be critical for learning and generalization.
- * Most investigations into PE have been tailored towards 1D string-based tasks, such as arithmetic or context-free grammars using pre-specified PEs (e.g., ROPE, or absolute PEs)
- * Here we investigate the importance on a suite of tasks with sequence data organized in higher dimensions (>greater than 1D sequences)
- * Specifically, we study the conditions by which we can *learn interpretable positional encodings*, and study how they impact generalization
- * Inspired by recent work on rich and lazy repre-

Intuition from a simple 2D task: The Latin Squares Task (simplified Sudoku)

sentation learning, we explored how initialization of a learnable PE parameter influences interpretability and generalization in transformers

Experiment 1: Learning interpretable positional encodings in the Latin Squares Task

Experiment 2: Learnable PEs recover interpretable network clusters in network simulation

Conclusion

- * We extend prior transformer generalization studies from 1D sequences to n-dimensional sequences, which requires positional encoding schemes for higher dimensions.
- * We demonstrate that *rich representation learning of positional encodings* which is induced by initializing parameters with a small norm – learns interpretable embeddings that also enhance generalization