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Motivation

Saliency maps provide a window on multimodal RAG, yet cosine-similarity maps (e.g. Col-

Pali) are fragile—lighting up spurious patches and collapsing under lexical noise.

Lack of rigorous evaluation. No standard way to measure whether a vision–language model

truly localizes the patches that drive its predictions.

High-stakesapplicationsneed transparency. Critical domains require knowingwhy amodel

retrieved specific regions.

Key Contributions

Theoretical critique of cosine similarity

We prove it misaligns with true patch influence in multimodal RAG, revealing systemic

failure modes.

Novel transparency method for Vision LLMs

Our method decomposes visual token flows to produce a faithful depiction of the

mechanisms that generate saliency maps.

Needle‑in‑a‑Patched‑Haystack benchmark

A dataset & metric suite that probes localisation fidelity for vision–language tasks.

Patch‐Based Datasets for Vision–Language Models

(a) Patch (b) Single-word (c) Multi-words (d) Text

Figure 1. Visualisations of the datasets used to assess VLMs, with the special patch at

position (2,0) inside a 3 × 3 grid.

Goal – Probe localization and text-conditioned retrieval by centering every image on a

single special patch.

Grid alignment – Each image is resized so its patch grid exactly matches the resolution

and patch size of the tested model, avoiding partial overlaps.
Datasets (in increasing difficulty)
1. Patch ⇒ raw visual localization.

2. Single-word ⇒ joint vision–text cue.

3. Multi-words ⇒ isolate relevant text amid distractors.

4. Text (Lorem Ipsum) ⇒ hardest real-world case.

Cosine Similarity ≠ Saliency

Representational overlap is not causal importance.

High cosine similarity between patch embeddings merely shows they occupy nearby

directions in latent space—it does not prove those patches drive the model’s prediction.

Context Entangles Patches. Each embedding already mixes information from all patches,

so similarity may reflect shared context rather than true relevance.

Faithful explanations must link to the output.

Gradient-based or perturbation methods quantify how changing a patch alters the final

score, providing a more reliable saliency signal.

Evaluation Metrics

Accuracy: A binary success indicator,
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(
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)
,

which equals 1 iff the model’s top-ranked patch coincides with any interesting patch.

Score: The mean similarity assigned to the interesting regions,
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∑
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Rank (normalised): Share of patches scoring higher (0 = best):
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where H × W is the shape of the similarity map.

Distance (normalised): The Euclidean distance between the predicted peak patch and

the nearest interesting patch, scaled by the grid diagonal:
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Needle in a Patched Haystack: Grid‐Based Saliency Evaluation

Grid result map: Iteratively plant the special patch at every grid index (x, y); compute

localisation metrics for each placement.

Aggregation: Average per–location scores over all runs to obtain a smoothed 2-D

surface.

Outcome: The resulting Needle-in-a-Patched-Haystack map visualises where the

model consistently locks onto the correct patch and where spurious activations arise,

offering a concise diagnostic of localisation skill.
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Transparent processing of VLM for visual RAG
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Figure 2. Visualization of ColPali’s image processing pipeline.

Results

Figure 3. Mean ± 95% CI for the four performance metrics across dataset types. Accuracy

and Score are higher‐better; Rank and Distance are lower-better.
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Figure 4. Bottom left gradient bias of ColQwen on the Single-word dataset.

Key Takeaways

Realismmatters: Greater realism increases accuracy and reduces localisation error.

Model‑specific behaviour: Trends differ across models.

Spatial biases: “O-shaped” (ColPali) and bottom-left gradient (ColQwen) anomalies.

Lexical interference: Semantically related distractors hurt ColPali/ColQwen but slightly

benefit Gemma.

Bottomline: Raw cosine-similarity maps can mislead; our benchmark and toolkit enable

more transparent, trustworthy saliency attribution.

Discussion, Limitations & Future Work

Spatial biases persist: Vision-LLMs exhibit location-specific artefacts, likely rooted in

positional encodings, data biases, or architectural limits—calling for better encoding

schemes or regularisation.

Modality gap: Image/Text embeddings remain partially separated—closing this gap is

essential for reliable retrieval.

VLM have a weak spatial reasoning: Directionality and topology remain challenging for

current models.
Next steps:
Validate on real-world scanned documents.

Design fine-tuning objectives that penalize positional and modality bias.

Develop context-aware saliency methods beyond raw cosine scores.

craft.ai Actionable Interpretability Workshop at ICML 2025 bastien.zimmermann@craft.ai

https://craft.ai
mailto:bastien.zimmermann@craft.ai

	References

