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Motivation

Why does batch size affect generalisation?

Although batch size is widely known to affect convergence and generalisation, especially

in graph/text models, existing explanations remain heuristic and non-interventionist.

We address:

Lack of causal understanding of batch-size effects.

No modelling of higher-order (joint) training interactions.

No bridge between interpretability and training-time control.

Our solution: HGCNet, a causal hypergraph framework that models batch dynamics

structurally, enabling do-calculus–based training insights.

HGCNet: Causal Hypergraph Framework

We treat batch size B as a root intervention acting via:

B → N → S → C → G

Nodes:

N : Gradient noise

S: Sharpness (Hessian)

C: Complexity (e.g. norm, margin)

G: Generalisation (Test Acc.)

Figure 1. Causal Hypergraph Structure in HGCNet

Hyperedge: {N, S} → C enables joint mediation.

Implication: Enables do-calculus estimation and training-time policy derivation via ATE

curves.

HGCNet Algorithm and Estimation

Input: Dataset D, batch sizes B ∈ {16, 32, . . . , 512}
Steps:

1. Estimate gradient variance N(B)
2. Compute Hessian-based sharpness S

3. Estimate complexity C = f (N, S)
4. Measure generalisation G

5. Fit structural equations, apply:

P (G | do(B = b)) =
∑

N,S,C

P (G|C) P (C|N, S) P (S|N) P (N |B = b)

6. Derive ATE curves and counterfactual predictions.

HGCNet Construction Details

We model the training process using a directed hypergraph: nodes are stochastic vari-

ables (e.g., gradient noise, sharpness), and hyperedges capture joint causal interactions.

Key design:

Edges like {N, S} → C encode higher-order effects (e.g., joint influence of noise and

sharpness on complexity).

Conditional independence relations enable efficient ATE and do-calculus inference.

Training-time policy can be derived by counterfactuals: do(B = b′) reveals expected
test performance.

This approach allows edge removal as a structured ablation tool, identifying dominant

mediators.

Key Result

ATE (B=16 vs. B=512) shows a consistent +2.4–3.4% gain in generalisation across tasks.

Theoretical Insights

We treat batch size B as a *policy variable*, inducing downstream effects via gradient

noise and sharpness:

B → N → S → C → G

We leverage:

*Causal mediation analysis* to identify how training-time variables influence

generalisation.

*Do-calculus* for counterfactual estimation of policies like batch size intervention.

ATE (Average Treatment Effect) curves to formalise generalisation tradeoffs.

Empirical Setup & Main Results

Domains & Datasets:

Graphs: Cora, CiteSeer

Text: PubMed, Amazon Reviews

Models: GCN, GAT, PI-GNN, BERT, RoBERTa, HGCNet

Measured Quantities:

Gradient Noise (variance of updates)

Hessian Sharpness (spectral norm)

Model Complexity (norm, margin)

Generalisation Accuracy / Precision

Main Results (ATE Estimate):

Dataset B=16 B=512 Gain

Cora 83.9% 80.5% +3.4%

CiteSeer 79.1% 76.0% +3.1%

PubMed 88.2% 85.1% +3.1%

Amazon 92.4% 89.0% +3.4%

Smaller batches causally improve generalisation.

Causal Ablation (Edge Removal):

Ablation Drop in Generalisation (G)

Remove Noise Node (N) −3.4%

Remove Sharpness Node (S) −2.8%

Remove {N,S} → C Edge −2.0%

SAM-only Control −1.5%

Gradient noise is the dominant causal mediator.

Broader Impact

Scientific Impact:

Introduces the first causally grounded model for analysing batch size effects in

training dynamics.

Provides a foundation for causal benchmarking of generalisation–efficiency tradeoffs.

Practical Relevance:

Enables interpretable, theory-driven batch size selection policies.

Reduces reliance on heuristic tuning, especially in resource-constrained or

safety-critical domains.

Future Applications:

Can inform policy decisions in curriculum learning, fairness-aware training, and robust

model deployment.

Lays groundwork for causal training-time interventions in domains such as

reinforcement learning and automated ML.
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