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Abstract

We present a novel multi-modal graph learning framework for competing risks
survival analysis from electronic health records (EHRs). We introduce a unified,
end-to-end model that learns modality-specific spatio-temporal graph represen-
tations for time-series, demographics, diagnostic histories, and radiographic
text, and fuses them via hierarchical attention into a global patient graph. We
further propose a composite training objective that combines survival likelihood,
temporal ranking, and graph regularisation losses to improve risk discrimination,
calibration, and structural consistency over time. Our model outperforms the
latest baselines across five real-world EHR datasets, achieving up to 8% gains
in cause-specific concordance, while offering fine-grained interpretability across
temporal and modality dimensions.

Methods

Overview. We propose a dynamic, end-to-end graph learning model that inte-
grates four heterogeneous EHR modalities—time-series vitals/labs, static de-
mographics, diagnostic codes (ICD), and radiographic report embeddings—into
a unified graph structure. Each patient is represented as a sequence of time-
evolving graphs per modality, fused via a hierarchical attention mechanism into
a global graph. The model captures intra- and inter-modality dependencies over
time and supports missing-modality inference.

1. Dynamic Graph Construction. For each time window t, a graph A
(T)
t ∈ Rf×f

is computed from learnable embeddings:

A
(T)
t = Θ⊤

t · Ψt

We retain only the top-k strongest edges per node (excluding self-loops), creating
a sparse adjacency matrix. Vertices are linked across adjacent time windows to
preserve temporal continuity. This yields a dynamic sequence:

A(T) = {A(T)
1 , . . . , A(T)

s } ∈ Rf×f×s

2. Multi-Modal Graph Encoding. Each modality is encoded as its own graph:
▶ ICD graphs A(C) are built using cosine similarity between code embeddings.
▶ Radiograph reports are embedded with Clinical-Longformer and connected

with Gaussian similarity.
▶ High-dimensional graphs (ICD, Radiography) are reduced to 50× 50 via

GNN-based pooling:

X̃(C), Ã(C) = f
(C)
θ (X(C), A(C))

Each modality has its own interpretability matrix I(m) ∈ Rdm×dm, used for attribu-
tion.

3. Hierarchical Graph Fusion. We introduce learnable cross-modality attention
matrices W (m→n) ∈ Rdm×dn, capturing directional influence across modality pairs.
The final fused graph is a block matrix:

AFused =

A(T) W (T→S) · · ·
... A(S)

. . .

 , GFinal := AFused ◦ softmax(IFused)

Fused attention allows inter-modality reasoning and interpretability. Missing
modalities are handled by dropping the corresponding blocks at test time.

4. Objective Function. The total training loss combines contrastive, structural,
and likelihood terms:

Ltotal = Lfocal + ϵLcontrast + λLreg + µLstructure + βLVGAE

Lfocal = −(1− ŷ)γ log(ŷ)

Lcontrast = − log
exp(Simθ(A,A+))

exp(Simθ(A,A+)) +
∑

A− exp(Simθ(A,A−))

Lreg =
∑

(i,j)∈E

∥hi − hj∥2

Lstructure = 1−
∑

Aij · A′
ij

∥A∥F · ∥A′∥F
To model competing risks, we estimate the joint distribution of time and event
type using a survival likelihood:

LNLL = −
∑
i

log [event or censoring probability]

plus a time-aware risk ranking loss:

Lrank =

E∑
ϵ=1

µ
∑
i ̸=j

M ϵ
ij · η(R(i)

ϵ , R(j)
ϵ )

with smoothed pairwise loss η(a, b) = exp
(
−a−b

σ

)
. The final CIF for patient X at

time δ is:

F̂ϵ (δ | X) =

∑
tJ<δ≤∆ âϵ,δ

1−
∑

ϵ̸=∅
∑

n≤tJ
âϵ,n

Performance Summary Across Tasks and Datasets

Our model achieves top performance across five real-world clinical datasets,
covering both single-risk and competing-risk survival tasks. We report time-
dependent concordance (C-index ↑), Integrated Brier Score (IBS ↓), and In-
tegrated Binomial Log-Likelihood (IBLL ↓), reflecting ranking, calibration, and
probabilistic accuracy.

In single-risk settings, our model outperforms classical (Cox PH), neural (Deep-
Surv, DeepHit), and dynamic (DySurv, Dynamic-DeepHit) methods, with largest
gains in hospital admission (MC-MED, C-index: 0.880).

In competing-risk tasks, we maintain high cause-specific C-index across out-
comes (e.g., ICU admission, death), demonstrating strong multi-outcome gener-
alisation.

Outcome / Task C-index IBS IBLL Dataset
ICU Mortality 0.861 0.139 -0.398 MIMIC-IV
ICU Mortality 0.809 0.183 -0.442 eICU
Hospital Mortality 0.768 0.189 -0.417 PBC2
Survival (General) 0.797 0.171 -0.426 SUPPORT
Hospital Admission 0.880 0.128 -0.459 MC-MED
ICU Admission 0.827 – – MC-MED (CR)
ED Observation 0.797 – – MC-MED (CR)
Death 0.790 – – PBC2 (CR)
Liver Transplant 0.766 – – PBC2 (CR)

Ablation Study on MC-MED

We evaluate model variants to quantify the importance of each component.
Removing ranking or structural loss reduces concordance. Excluding ICD or
radiographic data harms performance on outcomes needing medical history.
This confirms the value of our multi-modal attention-based design.

Variant ICU Adm. Hosp. Adm. ED Obs.
w/o Ranking Loss 0.802 0.783 0.776
w/o Structural Loss 0.808 0.789 0.779
w/o ICD Codes 0.822 0.828 0.785
Ours (Full) 0.827 0.880 0.797

Interpretability

We visualise both temporal and modality-specific attention weights. Panel (a)
shows how feature importance evolves in time for ICU prediction. Panels (b–c)
show cross-modal contributions for ICU and hospital admission, revealing inter-
pretable, outcome-specific attention patterns.

(a) Temporal attention on top ICU features (eICU).

(b) Cross-modality weights for ICU
admission (MC-MED).

(c) Cross-modality weights for hospital
admission (MC-MED).


