

Gaotang Li[†], Yuzhong Chen[‡], Hanghang Tong[†] [†]University of Illinois Urbana-Champaign [‡]VISA Research **Contact:** gaotang3@illinois.edu

BACKGROUND

Knowledge Conflict: Parametric Memory vs. Contextual Information (E.g. The capital city of France is Beijing. The capital city of France is)

Common in Context-intensive settings (RAG, agent etc.) **CORE QUESTIONS**

- > What happens internally during knowledge conflict? [Q1]
- > Can we control the model's behavior under knowledge conflict? [Q2]

RELATED WORKS

- Behavioral study of knowledge conflict: (1). RAG Hallucination (Context as oracle) (2) Irrelevant Context (Memory as oracle)
- Mechanistic analysis_[1,2]: some model components (attention) heads) are promoting memory, while others are promoting context, and they are exclusive.

PART I Does there exist a "universal" memory and context module? [Q1⁺] Memory Context Others

> Input $(X, y_p, y_c), X \coloneqq \{x_i\}_{i=1}^3$ (clean, substitution-conflict, coherent conflict), y_p : parametric answer, y_c : context answer, $M^{(i)}$: model component with index i.

Taming Knowledge Conflicts in Language Models

Head	Subs-Co	Coh-Conflic					
IICuu	\triangle Context Prob	rianglePara Prob	\triangle Context Prob	\bigtriangleup			
(8, 0)	+0.18	-0.03	+0.04				
(15, 6)	+0.16	-0.04	+0.08				
(9, 3)	+0.13	-0.08	-0.17				
(13, 5)	+0.11	-0.03	-0.13				

- > Stage 2 mitigates the counteracting effect by reapplying avoiding the indirect effects that single-pass intervention

Theoretically, we also show that run-twice is more effective than runsettings (Prop. 5.5.).

Enhancing Parametric Beliefs v.s. Contextual Reliance

Dataset Conflict Type		Athlete Sport		Book Author		Company Founder		Company Headquarter			Official Language		World Capital			Average						
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Gemma	Original	93.4	18.1	0.0	73.0	7.7	0.0	47.0	2.7	0.0	64.2	0.7	0.0	96.9	23.5	0.0	94.1	15.1	1.1	78.1	11.3	0.2
	Prompt	93.4	44.5	0.0	73.0	22.4	1.6	47.0	6.5	3.8	64.2	3.1	0.0	96.9	50.0	22.2	94.1	50.8	35.7	78.1	29.6	10.5
	$PH3_l$	86.6	71.6	33.3	33.3	4.8	0.0	28.1	10.8	19.5	44.3	22.4	30.6	90.7	72.8	82.7	84.3	64.3	88.1	61.2	41.1	42.4
	PH3 _s	93.2	75.3	0.0	21.8	19.3	0.2	42.7	5.4	0.0	62.0	0.7	0.0	82.7	37.7	0.0	78.9	15.7	0.5	63.5	25.7	0.1
	JUNE (Ours)	91.2	63.2	65.9	78.0	61.0	2.9	46.5	44.9	41.1	57.9	36.2	38.9	94.4	82.1	84.0	91.9	69.2	83.2	76.7	59.4	52.7
	JUICE (Ours)	96.3	95.4	91.9	79.8	75.5	68.0	45.4	39.5	43.2	65.8	60.0	59.3	93.2	86.4	85.2	94.1	95.1	93.0	79.1	75.3	73.4
Llama2	Original	90.4	9.0	0.7	81.4	47.0	0.0	57.5	29.3	0.0	75.2	1.1	0.7	95.7	46.9	0.0	95.1	22.3	0.0	82.5	25.9	0.2
	Prompt	90.4	70.2	0.2	81.4	65.1	22.0	57.5	16.6	24.3	75.2	38.0	15.7	95.7	79.6	40.7	95.1	60.3	15.8	82.5	55.0	19.8
	$PH3_l$	91.0	87.4	37.5	77.8	92.0	70.9	53.0	52.2	32.6	73.4	74.0	12.1	94.4	90.7	84.0	94.2	95.7	90.2	80.6	82.0	54.5
	PH3 _s	89.0	88.1	10.5	80.2	86.1	64.5	52.7	50.0	34.0	73.4	72.9	18.5	94.4	85.5	80.7	94.0	91.3	85.3	80.6	79.0	48.9
	JUNE (Ours)	89.9	61.6	50.4	77.1	85.6	79.8	53.6	47.0	40.9	72.2	66.3	64.0	93.8	92.0	95.7	94.6	94.0	95.7	80.2	74.4	71.1
	JUICE (Ours)	91.5	88.6	91.0	82.8	91.1	88.5	53.0	51.9	54.1	74.3	74.3	73.6	96.1	93.8	94.4	95.4	95.4	96.2	82.2	82.5	83.0
Llama3	Original	84.1	22.2	0.0	55.6	2.2	0.0	61.1	3.3	0.0	80.3	1.4	1.8	96.3	20.4	0.6	94.6	16.8	0.0	78.7	11.0	0.4
	Prompt	84.1	87.4	4.1	55.6	77.7	0.0	61.1	38.3	0.6	80.3	48.2	0.0	96.3	85.2	5.6	94.6	83.8	11.9	78.7	70.1	3.7
	$PH3_l$	86.4	86.5	14.1	75.3	87.4	4.9	55.6	48.9	30.6	78.0	55.3	9.4	96.3	96.3	84.0	93.0	94.1	92.4	80.7	78.1	39.2
	PH3 _s	86.5	86.3	12.5	61.1	84.8	6.8	58.3	51.7	27.8	70.0	56.2	26.8	96.3	95.8	87.0	91.4	87.6	90.3	77.3	77.1	41.9
	JUNE (Ours)	82.8	72.8	58.7	66.2	92.1	83.0	61.7	51.1	54.4	80.5	56.9	56.0	95.7	95.7	93.2	94.1	95.7	96.8	80.2	77.4	73.7
	JUICE (Ours)	87.0	87.8	95.9	86.5	92.3	88.7	61.7	56.7	55.6	79.8	75.9	74.8	96.3	96.3	95.7	95.7	96.2	97.3	84.5	84.2	84.7