
Input Concept Embedding
Encoders Label Predictor Concept

Bottleneck
Label

Predictor
Concept
PredictorInput

Residual Channel

Mateo Espinosa Zarlenga1, Gabriele Dominici2, Pietro Barbiero3, Zohreh Shams1,4, Mateja Jamnik1 

Avoiding Leakage Poisoning:
Concept Interventions Under Distribution Shifts Code

1 University of Cambridge, 2 Università della Svizzera italiana, 3 IBM Research, 4 Leap Laboratories Inc.

2025

Concept Bottleneck Models (CBMs)
Concept Bottleneck Models (CBMs) [koh et al.] are a 
family of interpretable deep neural networks that, given 
an input 𝒙, first predict a set of high-level “concept” 
representations "𝒄 and then predict a task label 𝑦 ̂ from "𝒄.

Test-time Concept Interventions
CBMs can improve their accuracy by allowing an expert 
to correct mispredicted concepts at test-time:

This can lead to powerful collaborative human-AI 
systems that can outperform the original model or expert:

Background: CBMs1
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Importance of Intervenability
In theory, intervenability allows CBMs to receive help for 
“tricky” inputs, such as Out-Of-Distribution (OOD) inputs

New Tradeoffs in Intervenability
However, we show that state-of-the-art CBMs struggle to 
remain both intervenable for OOD inputs and accurate 
when their training concept set is incomplete.

This is because existing “completeness-agnostic” CBMs 
use information bypasses (e.g., embeddings or residuals) 
that can get corrupted, or poisonous, for OOD inputs.

Problem: Leakage Poisoning2
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Fig 1: Task accuracy of ”Vanilla CBM” and CEM, a state-of-the-art CBM, when 
intervening on in-distribution (solid lines) and out-of-distribution (dashed lines) test sets.
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Our model, MixCEM, determines when leakage is helpful and when it is poisonous. It does this by learning two embeddings 
(𝒄𝒊

" , 𝒄𝒊
# ) per concept (one for when the concept is on and one when it is off) that are formed by mixing (1) a global concept-

specific component &𝒄𝒊
"/#  that cannot leak information and (2) a “leaky” contextual sample-specific component 𝒓𝒊
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Solution: Mixture of Concept Embeddings Model (MixCEM)3

Key Results4
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Key Result #2: MixCEM’s bottlenecks remain in-distribution 
after being intervened on even for OOD samples.

Fig 3: t-SNE projections of different concept bottlenecks before and 
after all concepts have been intervened on for an OOD test set.

Key Result #1: MixCEM remains highly accurate and intervenable for ID and OOD 
test sets. This holds across different forms of distribution shifts.

Fig 2: Intervention curves for in-distribution (top) and out-of-distribution (noised, bottom) 
test sets. See paper for similar results with more datasets, baselines, and forms of OOD shifts.


