

Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts

Mateo Espinosa Zarlenga¹, Gabriele Dominici², Pietro Barbiero³, Zohreh Shams^{1,4}, Mateja Jamnik¹

¹ University of Cambridge, ² Università della Svizzera italiana, ³ IBM Research, ⁴ Leap Laboratories Inc.

IBM **Research** | Zurich

Problem: Leakage Poisoning

Background: CBMs

Concept Bottleneck Models (CBMs)

Concept Bottleneck Models (CBMs) [koh et al.] are a family of *interpretable* deep neural networks that, given an input **x**, first predict a set of high-level "concept" representations \hat{c} and then predict a task label \hat{y} from \hat{c} .

Test-time Concept Interventions

CBMs can improve their accuracy by allowing an expert to correct mispredicted concepts at test-time:

Importance of Intervenability

In theory, intervenability allows CBMs to receive help for "tricky" inputs, such as **Out-Of-Distribution (OOD)** inputs

A noisy but understandable X-ray scan

A chicken in the unusual act of flying

New Tradeoffs in Intervenability

However, we show that state-of-the-art CBMs struggle to remain both intervenable for OOD inputs and accurate when their training concept set is *incomplete*.

This can lead to powerful *collaborative* human-Al systems that can outperform the original model or expert:

Fig 1: Task accuracy of "Vanilla CBM" and CEM, a state-of-the-art CBM, when intervening on in-distribution (solid lines) and out-of-distribution (dashed lines) test sets.

This is because existing "completeness-agnostic" CBMs use information bypasses (e.g., embeddings or residuals) that can get corrupted, or **poisonous**, for OOD inputs.

Solution: Mixture of Concept Embeddings Model (MixCEM)

Our model, MixCEM, determines when leakage is *helpful* and when it is *poisonous*. It does this by learning two *embeddings* $(c_i^{(+)}, c_i^{(-)})$ per concept (one for when the concept is on and one when it is off) that are formed by mixing (1) a global conceptspecific component $\bar{c}_i^{(+/-)}$ that cannot leak information and (2) a "leaky" contextual sample-specific component $r_i^{(+/-)}(x)$. **Embedding Construction** Mixing

Backbone

ì ĉ. 🔘 Label

Bottleneck

Key Results

Key Result #1: MixCEM remains highly accurate and intervenable for ID and OOD test sets. This holds across different forms of distribution shifts.

Fig 2: Intervention curves for in-distribution (top) and out-of-distribution (noised, bottom) test sets. See paper for similar results with more datasets, baselines, and forms of OOD shifts.

Key Result #2: MixCEM's bottlenecks remain in-distribution after being intervened on even for OOD samples.

Fig 3: t-SNE projections of different concept bottlenecks before and after all concepts have been intervened on for an OOD test set.