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Background: CBMs

Concept Bottleneck Models (CBMs)

Concept Bottleneck Models (CBMs) [koh et al.] are a
family of interpretable deep neural networks that, given
an input x, first predict a set of high-level “concept”
representations ¢ and then predict a task label y from €.
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Test-time Concept Interventions

CBMSs can improve their accuracy by allowing an expert
to correct mispredicted concepts at test-time:
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This can lead to powerful collaborative human-Al
systems that can outperform the original model or expert:
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Problem: Leakage Poisoning

Importance of Intervenability
In theory, intervenability allows CBMs to receive help for
“tricky” inputs, such as Out-Of-Distribution (OOD) inputs
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New Tradeoffs in Intervenability

However, we show that state-of-the-art CBMs struggle to
remain both intervenable for OOD inputs and accurate
when their training concept set is incomplete.
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Fig 1: Task accuracy of "Vanilla CBM” and CEM, a state-of-the-art CBM, when
intervening on in-distribution (solid lines) and out-of-distribution (dashed lines) test sets.

This is because existing “completeness-agnostic” CBMs
use information bypasses (e.g., embeddings or residuals)
that can get corrupted, or poisonous, for OOD inputs.
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Solution: Mixture of Concept Embeddings Model (MixCEM)

Our model, MixCEM, determines when leakage is helpful and when it is poisonous. It does this by learning two embeddings
(+) ( )
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per concept (one for when the concept is on and one when it is off) that are formed by mixing (1) a

~ that cannot leak information and (2) a “leaky” contextual sample-specific component rg /7 (x).
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Kev Results

Key Result #1: MixCEM remains highly accurate and intervenable for ID and OOD
test sets. This holds across different forms of distribution shifts.
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Fig 2: Intervention curves for in-distribution (top) and out-of-distribution (noised, bottom)

test sets. See paper for similar results with more datasets, baselines, and forms of OOD shifts.
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Key Result #2: MixCEM’s bottlenecks remain in-distribution
after being intervened on even for OOD samples.
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Fig 3: t-SNE projections of different concept bottlenecks before and
after all concepts have been intervened on for an OOD test set.



