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Reasoning training

* There is lots of hype about reasoning training e We reproduce this with OLMo-2 on verifiable math problems
* DeepSeek show how to do it with RL (GRPO) and distillation ~ « Same model/data/batch sizes, mostly the same parameters
(SFT), but what training dynamics underpin it? » We save 20 checkpoints during training for analysis
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Cross checkpoint analysis
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* Queries and Keys in middle layers seem to change the most * Makes sense: in GRPO, careful
 They create the attention matrix updates are critical
* Hypothesis: Reasoning training = learning to attend elsewhere? * Could explain benchmark dynamics
KL Divergence Conclusion
= KL Divergence During Reasoning Training on MATH-500 * Eliminating confounding variables allows us to reason about
% l_'_..-'——--"""‘"""'"'"'"'"'"'" the differences of GRPO and SFT
b 3 /,I” * GRPO is expensive and unstable
% ./  Many works do not account for this cost explicitly
@ 2 / GRPO * For well-defined tasks where out-of-domain degradation
78/ / W SFT is acceptable, SFT may be preferable
§1 /’  GRPO: amplification of existing capabilities
g / * SFT: acquisition of novel capabilities at cost of old ones
O, * The attention matrix sees the largest changes
X 100 200 300 400 500  We experiment with freezing everything else but observe
Training Steps this to work poorly = training dynamics are complex
* KL Divergence shows the same picture: * Future work: investigate which mathematical tasks are
 SFT makes large changes to the model early into training oresent OLMo-2’s open pre-training data
* GRPO changes the model gradually * Connect with the kind of capabilities we can amplify in post-

* Again intrinsic to GRPO: clipping, trust region, low LR training
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