

DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values

Changhun Kim^{1,2}* Yechan Mun¹* Sangchul Hahn¹ Eunho Yang^{1,2}
¹AITRICS ²KAIST *Equal Contribution

TL;DR: We propose a novel SHAP-based XAI algorithm tailored for online patient monitoring.

Contribution

- We propose **DeltaSHAP**, a novel XAI algorithm for **online patient monitoring** that attributes **prediction changes** over time to **newly observed features**, with **directional attributions** and **real-time efficiency** via Shapley Value Sampling.
- We introduce new evaluation metrics—Area Under Prediction
 Difference (AUPD) and Area Under Prediction Preservation
 (AUPP)—to quantitatively evaluate the faithfulness and
 sufficiency of feature attributions in time series XAI.
- Extensive experiments on real-world clinical datasets demonstrate that DeltaSHAP provides more **faithful**, **stable**, **and clinically interpretable explanations** compared to existing XAI baselines.

Proposed Method: DeltaSHAP

- DeltaSHAP attributes the prediction change caused by newly observed features at time T by considering:
 - $\Delta = f(X_{T-W+1:T}) f(X_{T-W+1:T} \setminus X_T).$
- Shapley Value Sampling estimates each feature's marginal effect by averaging over sampled permutations:

$$\hat{\phi}_{j}(f, X_{T-W+1:T}) = \frac{1}{N} \sum_{\pi \in \Omega} [v(S_{\pi,j} \cup \{j\}) - v(S_{\pi,j})],$$

where $S_{\pi,j}$ is set of features before j in permutation π , and v(S) is a model output when only features in S at T are observed.

- Baseline Selection
 - Missing features are filled with **last observations**, matching **preprocessing** and avoiding **unrealistic imputations**.
- Why DeltaSHAP?
 - Intuitive: attributes prediction change to observed features at T with directional explanation.
 - Practicality: model-agnostic and time-efficient.
 - Normalization with $\phi_j(f, X_{T-W+1:T}) = \hat{\phi}_j(f, X_{T-W+1:T})$ · $\Delta/\sum_{k \in \mathcal{F}_{\text{obs}}} \hat{\phi}_k(f, X_{T-W+1:T})$ satisfies the **efficiency** property.

Qualitative Experiments

• DeltaSHAP provides clinically intuitive explanations: reduced oxygen saturation lowers the risk score, while increased glucose raises it—consistent with clinical understanding.

Limits of Current XAI in Online Monitoring

- Explaining prediction differences between time steps is essential for understanding patient risk evolution, but existing methods rarely capture temporal change.
- Clinicians need directional attributions—how recent feature changes increase or decrease risk—rather than unsigned importance alone, but recent time series XAI methods provide no directionality.
- These attributions must be computed in **real time**, but current approaches are often **too slow for practical use**, **limiting their clinical utility**.

Proposed Evaluation Metrics

• Let f(X) be a model prediction, and let X_k^{\uparrow} and X_k^{\downarrow} be the input with the top-k and bottom-k important features removed, respectively. Cumulative Prediction Difference / Preservation (CPD / CPP) are defined as:

$$CPD(f, X, K) = \sum_{k=0}^{K-1} |f(X_k^{\uparrow}) - f(X_{k+1}^{\uparrow})|,$$

$$CPP(f, X, K) = \sum_{k=0}^{K-1} |f(X_k^{\downarrow}) - f(X_{k+1}^{\downarrow})|.$$

• Extending these, we define Area Under Prediction Difference (AUPD) and Area Under Prediction Preservation (AUPP) as:

$$AUPD(f, X, K) = \frac{1}{K} \sum_{k=1}^{K} CPD(f, X, k),$$

$$AUPP(f, X, K) = \frac{1}{K} \sum_{k=1}^{K} CPP(f, X, k).$$

- Why AUPD and AUPP?
 - Ranking-sensitive: Emphasize the impact of higher-ranked features for more meaningful attribution evaluation.
 - Smoothing effect: Aggregating over multiple k values mitigates instability from individual steps.

Quantitative Experiments

Algorithm	AUPD ↑		AUPP ↓		Wall-Clock Time	
	MIMIC-III	P19	MIMIC-III	P19	MIMIC-III	P19
LIME	8.20±0.03	1.13±0.00	21.58±0.03	3.58±0.00	0.22	0.29
GradSHAP	6.20±0.02	0.96±0.00	19.68±0.03	3.09±0.00	<u>0.03</u>	0.04
IG	13.46±0.00	2.28±0.00	14.51±0.00	2.42±0.00	0.04	0.04
DeepLIFT	13.95±0.00	2.24±0.00	14.35±0.00	2.45±0.00	<u>0.03</u>	<u>0.03</u>
FO	13.55±0.00	2.34±0.00	14.14±0.00	2.37±0.00	1.43	1.14
AFO	13.08±0.05	3.27±0.00	15.14±0.04	1.03±0.00	39.62	14.18
FIT	12.60±0.00	2.15±0.00	16.16±0.00	3.08±0.00	0.12	0.11
WinlT	10.06±1.48	1.27±0.00	16.56±1.75	3.23±0.00	0.30	0.29
DeltaSHAP	22.59±0.01	3.68±0.00	3.04±0.01	0.89±0.00	0.02	0.02

- Main Results: DeltaSHAP achieves 62% higher faithfulness than prior methods across clinical benchmarks including MIMIC-III and PhysioNet 2019 with LSTM backbone architecture.
- Computational Efficiency: Runs 33% faster than existing timeseries XAI methods, enabling real-time use.
- **Ablation study** shows forward-fill boosts attribution quality, normalization ensures efficiency, and sampling while N=25 balances speed and accuracy.