
• We propose DeltaSHAP, a novel XAI algorithm for online 
patient monitoring that attributes prediction changes over 
time to newly observed features, with directional attributions 
and real-time efficiency via Shapley Value Sampling.

• We introduce new evaluation metrics—Area Under Prediction 
Difference (AUPD) and Area Under Prediction Preservation 
(AUPP)—to quantitatively evaluate the faithfulness and 
sufficiency of feature attributions in time series XAI.

• Extensive experiments on real-world clinical datasets 
demonstrate that DeltaSHAP provides more faithful, stable, 
and clinically interpretable explanations compared to existing 
XAI baselines.
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• Explaining prediction differences between time steps is 
essential for understanding patient risk evolution, but existing 
methods rarely capture temporal change.

• Clinicians need directional attributions—how recent feature 
changes increase or decrease risk—rather than unsigned 
importance alone, but recent time series XAI methods provide 
no directionality.

• These attributions must be computed in real time, but current 
approaches are often too slow for practical use, limiting their 
clinical utility.

Limits of Current XAI in Online Monitoring

Proposed Method: DeltaSHAP

• DeltaSHAP attributes the prediction change caused by newly 

observed features at time 𝑇 by considering:
Δ = 𝑓 𝑋𝑇−𝑊+1:𝑇 − 𝑓 𝑋𝑇−𝑊+1:𝑇 ∖ 𝑋𝑇 .

• Shapley Value Sampling estimates each feature's marginal 
effect by averaging over sampled permutations:
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 where 𝑆𝜋,𝑗 is set of features before 𝑗 in permutation 𝜋, and 𝑣 𝑆  
is a model output when only features in 𝑆 at 𝑇 are observed.

• Baseline Selection

• Missing features are filled with last observations, matching 
preprocessing and avoiding unrealistic imputations.

• Why DeltaSHAP?

• Intuitive: attributes prediction change to observed features 
at 𝑇 with directional explanation.

• Practicality: model-agnostic and time-efficient.

• Normalization with 𝜙𝑗 𝑓, 𝑋𝑇−𝑊+1:𝑇 = ෠𝜙𝑗 𝑓, 𝑋𝑇−𝑊+1:𝑇 ∙
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෠𝜙𝑘 𝑓, 𝑋𝑇−𝑊+1:𝑇  satisfies the efficiency property.

• Let 𝑓(𝑋) be a model prediction, and let 𝑋𝑘
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with the top-𝑘 and bottom-𝑘 important features removed, 
respectively. Cumulative Prediction Difference / Preservation 
(CPD / CPP) are defined as:
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• Extending these, we define Area Under Prediction Difference 
(AUPD) and Area Under Prediction Preservation (AUPP) as:
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• Why AUPD and AUPP?
• Ranking-sensitive: Emphasize the impact of higher-ranked 

features for more meaningful attribution evaluation.

• Smoothing effect: Aggregating over multiple 𝑘 values 
mitigates instability from individual steps.

Proposed Evaluation Metrics

TL;DR: We propose a novel SHAP-based XAI algorithm tailored for online patient monitoring.

Quantitative Experiments

Algorithm
AUPD ↑ AUPP ↓ Wall-Clock Time

MIMIC-III P19 MIMIC-III P19 MIMIC-III P19

LIME 8.20±0.03 1.13±0.00 21.58±0.03 3.58±0.00 0.22 0.29

GradSHAP 6.20±0.02 0.96±0.00 19.68±0.03 3.09±0.00 0.03 0.04

IG 13.46±0.00 2.28±0.00 14.51±0.00 2.42±0.00 0.04 0.04

DeepLIFT 13.95±0.00 2.24±0.00 14.35±0.00 2.45±0.00 0.03 0.03

FO 13.55±0.00 2.34±0.00 14.14±0.00 2.37±0.00 1.43 1.14

AFO 13.08±0.05 3.27±0.00 15.14±0.04 1.03±0.00 39.62 14.18

FIT 12.60±0.00 2.15±0.00 16.16±0.00 3.08±0.00 0.12 0.11

WinIT 10.06±1.48 1.27±0.00 16.56±1.75 3.23±0.00 0.30 0.29

DeltaSHAP 22.59±0.01 3.68±0.00 3.04±0.01 0.89±0.00 0.02 0.02

• Main Results: DeltaSHAP achieves 62% higher faithfulness 
than prior methods across clinical benchmarks including MIMIC-
III and PhysioNet 2019 with LSTM backbone architecture.

• Computational Efficiency: Runs 33% faster than existing time-
series XAI methods, enabling real-time use.

• Ablation study shows forward-fill boosts attribution quality, 
normalization ensures efficiency, and sampling while 𝑁 = 25 
balances speed and accuracy.

Qualitative Experiments

• DeltaSHAP provides clinically intuitive explanations: reduced 
oxygen saturation lowers the risk score, while increased glucose 
raises it—consistent with clinical understanding.
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