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LLMs often make reasoning errors ARES excels on long synthetic reasoning
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Base Claim 1: The denominator of a fraction is 7 less than 3 times the numerator. 0.8 - Vethod
Base Claim 2: If the fraction is equivalent ta 2/5, what is the numerator? - =kho
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Step 1: Let the numerator be x. Step 1: Let the numerator be x. 0.0 .
Step 2: The denominator is 3x-7. Step 2: The denominator is 3x-7.V 5 10 20 30 50
Step 3: We know that x/(3x-7) = 2/5. Step 3: We know that x/(3x-7) =(3/5] SIS SRS ISR aLR
Step 4: Therefore, 5x = 6x-14. Step 4: Therefore|5x = 9x-21};
Step 5: Finally, we get x = 14. (Correct) Step 5: Finally, we ge{ J(Incorrect) ARES maintains high Macro-F1 on ClaimTrees, even for long chains.
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Existing methods struggle to detect statements, ClaimTrees: A synthetic reasoning benchmark

propagated errors, and invalid derivations. _ | Entail- | Entail- | LLM-
Reasoning Chain ARES Prev Base Judge
Base 1: Rule: H3 -> AZ - -
ARES: Structured error detection with logic Base 2:|Fact: | have D8 .-
/ \ Base 9: Rule: DG -> G8 - -
. LLM Reasoning Chain Claim 1: | have D8, | use rule (D8 -> U8) to derive U8 | 0.96 1.00 1.00 1.00
Base Claims | Step 1: Let the numerator be x.
The denominator of a fraction is 7 less 0,0 Step 2: The denominator is 3x-7.
than 3 times the numerator. l 1111 ¥ Step 3: We know that x/(3x-7) = 3/5. _ _
The fraction is equiva'ent to 2/5. Step 4: Therefore, 5x = 9x-21. Claim 6: | have H3, | use rule (H3 > AZ) to derive AZ 0.90 1.00 1.00 1.00
Step 5: Finally, we get x=5.25. Claim 7: | have AZ, | use rule (AZ -> SG) to derive SG | 0.00 0.00 0.00 0.20
‘ - 4 Claim 8:[| have SG+useTals(SG -> C6) to derive C6  |0.09  [1.00  [1.00 | 1.00
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B Unsound Claim 1 ) Only ARES detects the propagated error:
> Premises for entailment Let the numerator be x. The non-existent rule (AZ -> SG) cannot be used!
Base Claims Claim 2 Claim1
The denominator of a The denominator is 3x-7. _ .
e s e p Ceinz v ARES also wins on real benchmarks
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Autoregressive l\ Therefore, 5x = 9x-21. j_ — x
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The entailment model autoregressively checks each claim 0.0

: : : o PRMBench DeltaBench ClaimTrees CaptainCook4D
with respect to the previous claims verified to be sound.

Why is ARES so effective?

Statistical guarantees on reasoning
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. Saime @ Robust: Previous errors do not adversely affect current step.

Bernouilli Sample

Causal: Downstream steps do not affect current step.

Sufficient: All relevant claims included as premise for detection.
Entailment models are probabilistic: each step's soundness estimated

by probabilistically including previous claims by their soundness rates. @ e = 2 @
Theorem. With N = log(2m/d)/(2&%) samples, the soundness rate *

for m claims is estimated to € error with 1 - d confidence.




