Evaluating Neuron Explanations: A Unified Framework with Sanity Checks

Tuomas Oikarinen, Ge Yan, Tsui-Wei (Lily) Weng

GitHub: https://github.com/Trustworthy-ML-Lab/Neuron_Eval, Paper: https://arxiv.org/abs/2506.05774

Motivation: Lacking reliable evaluation of the faithfulness of neuron explanations in mechanistic interpretability

- Generating text explanations for individual neurons or feature vectors of a neural network is important for mechanistic interpretability.
- For these explanations to be useful, we must understand how reliable and faithful they are.
- Currently, different papers use very different evaluation methods, often with little justification, making comparison hard.

Our Contribution: A unified evaluation framework + 2 meta evaluation tests to identify reliable evaluation metrics

Contribution #1: A unified evaluation framework for neuron explanations - NeuronEval

Our proposed unified framework: NeuronEval

NeuronEval: A General Framework to Evaluate Neuron Explanations								
Metric M	Study	Concept Source c_t	Granularity	Domain				
Recall	(Zhou et al., 2015)	Crowdsourced	Whole Input	Vision				
~Recall	(Bau et al., 2017; Oikarinen & Weng, 2023) (Oikarinen et al., 2023; Bai et al., 2025)	Crowdsourced	Whole Input	Vision				
Precision	(Srinivas et al., 2025)	Generative	Whole Input	Vision				
F1-score	(Huang et al., 2023) (Gurnee et al., 2023)	Generative + Model Labeled data	Whole Input Per-token	Language Language				
IoU	(Bau et al., 2017; Mu & Andreas, 2020) (La Rosa et al., 2024)	Labeled data	Per-pixel	Vision				
Accuracy	(Koh et al., 2020)	Labeled data	Whole Input	Vision				
~AUC	(Zimmermann et al., 2023)	Crowdsourced	Whole Input	Vision				
Inverse AUC	(Bykov et al., 2023) (Kopf et al., 2024)	Labeled data Generative	Whole Input Whole Input	Vision Vision				
Correlation(T&R) Correlation	(Bills et al., 2023) (Oikarinen & Weng, 2024)	Model Model	Per-token Whole Input	Language Vision				
Spearman Correlation(T&R)	(Bricken et al., 2023; Templeton et al., 2024)	Model	Per-token	Language				
~WPMI	(Oikarinen & Weng, 2023)	Model	Whole Input	Vision				
MAD	(Kopf et al., 2024)	Generative	Whole Input	Vision				
\sim MAD	(Shaham et al., 2024) (Singh et al., 2023)	Generative Generative	Whole Input Whole Input	Vision Language				

UC San Diego

Trustworthy ML Lab @ UCSD

- lilywenglab.github.io

- We unify 20 diverse evaluations from existing work under the same mathematical framework
- Our framework works for any neuron explanations and directions in activations space, including (1) *features in Sparse Autoencoder (SAE)*, (2) *Linear probing*, (3) *Steering vectors*, (4) *Concept bottleneck models*, (5) *TCAV*, and (6) *individual neurons*.
- The evaluations mostly differ on:
 - (a) How concept labels **c**_t are sourced
 - (b) Which metric is used to compare similarity between $\mathbf{a}_{\mathbf{k}}$ and $\mathbf{c}_{\mathbf{t}}$

Contribution #2: Meta Evaluations + Insights on reliable evaluation metrics

Meta-Evaluation 1: Sanity Checks

The idea is to measure whether a metric can differentiate between a **perfect explanation** and (i) Overly generic explanation - Extra Labels Test, or (ii) Overly specific explanation – Missing Labels Test

Meta-Evaluation 2:

Comparing evaluation performance on neurons with known concept:

Metrics that pass sanity checks perform the best

	Avg.	Avg.
Method	AUPRC	Rank
Recall	0.6722	11.30
Precision	0.8039	7.90
F1-score/IoU	0.8140	6.70
Accuracy	0.7215	10.80
Balanced Accuracy	0.7979	7.30
Inverse Balanced Acc.	0.8087	7.10
AUC	0.7652	11.00
Inverse AUC	0.7569	10.90
Correlation	0.8765	1.60
Correlation(T&R)	0.6606	10.70
Spearman Correlation	0.0853	16.20
Spearman Correlation(T&R)	0.3418	15.40
Cosine	0.8666	2.30
WPMI	0.7999	7.30
MAD	0.6952	8.80
AUPRC	0.8406	3.90
Inverse AUPRC	0.6904	9.30

Meta-Evaluation #1	(I) Missing Labels Test		(II) Extra Labels Test		Pass
	Experimental	Theoretical	Experimental	Theoretical	
Recall	98.66%	100.00%	0.00%	0.00%	×
Precision	45.73%	0.00%	99.81%	100.00%	×
F1-score	93.68%	100.00%	99.82%	100.00%	\checkmark
IoU	93.62%	100.00%	99.81%	100.00%	\checkmark
Accuracy	23.79%	60.00%	70.37%	69.68%	×
Balanced Accuracy	98.65%	100.00%	53.67%	60.00%	×
Inverse Balanced Accuracy	64.18%	60.00%	99.50%	100.00%	×
AUC	94.96%	100.00%	59.18%	60.00%	×
Inverse AUC	52.81%	60.00%	99.99%	100.00%	×
Correlation	99.41%	100.00%	99.92%	100.00%	\checkmark
Correlation (T&R)	87.83%	100.00%	60.26%	43.64%	×
Spearman Correlation	64.05%	67.20%	49.21%	44.08%	×
Spearman Correlation (T&R)	80.04%	100.00%	59.81%	19.68%	×
Cosine	99.45%	100.00%	99.26%	100.00%	\checkmark
WPMI	95.89%	100.00%	58.84%	100.00%	×
MAD	59.81%	60.00%	99.34%	100.00%	×
AUPRC	95.61%	100.00%	99.46%	100.00%	\checkmark
Inverse AUPRC	99.15 %	100.00%	95.58%	89.54%	×

> Most existing evaluation metrics **fail at least one** of our sanity tests.

This includes popular metrics such as:

- Recall (Only evaluating highly activating inputs)
- Correlation with Top-and-Random sampling
- Generative evaluations like MAD and Inverse AUC
- > This is often caused by poor performance on unbalanced activations

In conclusions, **we recommend using the following metrics** for *reliable* evaluation:

Correlation, AUPRC, F1-score & IoU

Paper