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Motivation SemanticODE for ATE Estimation
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Beyond the ATE: Interpretable Modelling of Treatment Effects over Dose and Time

Method PK-random PK-real IHDP-based
In-domain Out-domain In-domain Out-domain In-domain Out-domain

SINDy 2.81 ± 1.04 3.88 ± 5.62 ! 106 ! 103 0.46 ± 0.12 2.32 ± 0.54
WSINDy 0.53 ± 0.21 7.96 ± 3.64 1.31 ± 0.50 5.21 ± 1.27 0.54 ± 0.04 25.16 ± 31.20
NeuralODE 0.50 ± 0.03 0.17 ± 0.08 0.54 ± 0.12 0.21 ± 0.13 0.39 ± 0.19 1.37 ± 1.15
XGBoost 0.40 ± 0.15 0.11 ± 0.04 0.43 ± 0.35 0.08 ± 0.02 0.36 ± 0.14 0.20 ± 0.09
PolyReg 0.27 ± 0.06 211.05 ± 82.49 0.34 ± 0.10 197.25 ± 69.20 0.05 ± 0.01 4.31 ± 1.83
SemanticATE 0.41 ± 0.28 0.04 ± 0.01 0.37 ± 0.29 0.02 ± 0.01 0.04 ± 0.02 0.02 ± 0.02

Table 1. Comparison of different ωtpaq estimation strategies. We report the average in-domain (t P r0, 1s) and out-domain (t P r1, 1.25s)
{MISE˘ std, computed over 5 seeds.

Method PK-random PK-real IHDP-based

Base 0.25 ± 0.09 0.22 ± 0.10 0.04 ± 0.02
Base + IB 0.25 ± 0.10 0.23 ± 0.09 0.06 ± 0.01
Base + IB + edits 0.23 ± 0.08 0.23 ± 0.09 0.08 ± 0.03

Table 2. Performance of the SemanticATE model with and without
modifications. We report the mean {MISE ˘ std, computed over
10 seeds.

6.3. Comparison to alternative estimation methods
We demonstrate that, apart from being transparent-by-
design, the benefit of using SemanticODE for the ωtpaq esti-
mation task lies in its good performance. Here, we compare
to alternative methods for modelling ωtpaq. We consider
standard ODE discovery algorithms, SINDy and WSINDy,
as implemented by the PySINDy library, and three black-
box approaches: NeuralODE, XGBoost and polynomial
regression. To make the ODE discovery methods suitable
for ωtpaq estimation setting, we fix the timing of the first
observation t0 across all individuals, and fit an additional
model to predict ωt0paq based on the dose a. ωt0paq is then
used as an initial condition for the trajectory. Because of the
requirements of the NeuralODE method, for this experiment
we rely on regular sampling of the outcomes.

Results. SemanticATE consistently outperforms the glass-
box methods (SINDy and WSINDy). While in some cases
the black box models outperform SemanticATE in-domain,
by imposing the necessary inductive biases (in this case, we
used the fact that the trajectory ends in a horizontal asymp-
tote), SemanticATE achieves incomparable out-domain per-
formance.

6.4. Insight: Efficient Trial Design
Although ωtpaq can be broadly applied, it holds particular
relevance and potential for RCTs. In early-phase clinical
trials – where patient safety is paramount and data is scarce
– precisely determining the optimal dosage is both crucial
and challenging. As methods employed in clinical trials
need to be characterised by sample efficiency, we analyse
the performance of SemanticATE as we change the number
of patients (see Appendix C.2) and as we change the number

of outcome measurements per patient, presented below.

Results. The results, presented in Figure Figure 4, show
that SemanticATE reaches optimal performance with only
15 outcome measurements. Further, we note that the perfor-
mance of the model improves significantly when irregular
(random) sampling of the measurement times is employed.
This insight can guide the design of the clinical trials.

7. Discussion and Future Work
Modelling the treatment effect as a smooth function of dose
and time through the use of SemanticODE reorients time-
varying causal inference toward interpretability and robust-
ness, positioning it for applications in high-stakes domains.
While in this preliminary paper we have assumed that the
data used for the estimation of ωtpaq comes from an RCT,
a natural direction for future work would be to consider
estimation from observational data, where non-random
assignment of the treatment dose or the measurement times
can lead to bias when not accounted for. Further, we believe
that introducing a notion of uncertainty quantification into
the predictions obtained from SemanticATE, for example
by quantifying the learned uncertainty of the property maps,
could further allow to make SemanticATE more suitable for
high-stake domains.
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📊 SemanticATE outperforms baselines! By 
allowing to impose the necessary inductive 
biases, SemanticATE achieves incomparable 
performance both in-distribution ( ) 
and out-of-distribution ( ).

t ∈ [0,T ]
t > T

📊 SemanticATE allows to easily impose inductive biases and modify 
obtained solutions, without sacrificing accuracy! The practitioner can impose 
known inductive biases (IB) by modifying the set of possible compositions, or 
directly changing the property maps if they don’t agree with domain knowledge 

Treatment effects are not directly observable!
Dataset: 

To use SemanticODE, we construct surrogate treatment 
effect:

• We train a baseline trajectory model, using 
untreated patients with , and utilising patient 
characteristics: 

• For all other patients in the dataset we then construct 
the surrogate treatment effect: 

𝒟 = {Xi, Ai, (Ti,j, Yi,j)
mi
j=1}

n
i=1

τ̃t(a) ≈ Yt(a) − Yt(0)

A = 0
Yt(0) ≈ φ̂0(X, T )

τ̃i,j = Yi,j − φ̂0(Xi, Ti,j)

RQ: How does the treatment effect  evolve over time,
depending on the dose, ?
💡How long does it typically take for the treatment effect to exceed a 
clinically relevant threshold ?
💡 When, on average, does the treatment effect reach its peak, and how 
does this vary with the dose?
💡 What is the lowest dose ensuring that the effect has a sustained 
benefit?

To answer these question we want to model:

Desiderata for a useful model: interpretable, verifiable, editable

τ
a

α

τt(a) = 𝔼[Yt(a) − Yt(0)]

Direct Semantic Modelling with SemanticODE
Composition map: describes the shape of 
the trajectory as a function of the dose, .

Property maps: describe how the key 
properties of the identified composition 
(maxima, derivatives, asymptotes) depend 
on the dose .

🚀 This decomposition allows to easily 
impose inductive biases and edit the 
learned solutions to match the domain 
knowledge!

a

a
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Figure 3: (a) Composition and transition points of x(t) = sin(t) on [0, 2ω]. (b) Motif set used in the
proposed formalization of semantic representation.

Extending dynamical motifs The set of motifs we choose is inspired by the original set of
dynamical motifs (Kacprzyk et al., 2024b) but we adjusted and extended it to cover unbounded time
domains and different asymptotic behaviors. We define a set of ten motifs, four bounded motifs and
six unbounded motifs. Each motif is of the form s±±↑, i.e., is described by two symbols (each + or
→) and one letter (b/u/h). The symbols refer to its first and second derivatives. The letter b signifies
the motif is for bounded time domains (e.g., for interval (t1, t2)). Both h and u refer to unbounded
time domains. These motifs are always the last motif of the composition, describing the shape on
(tend,+↑) where tend is the t-coordinate of the last transition point. h specifically describes motifs
with horizontal asymptotes. For instance, s→+h is an unbounded motif that describes a function that
is decreasing (→), strictly convex (+) and with horizontal asymptote (h). All motifs are visualized
in Figure 3b. Note that we excluded the three original motifs describing straight lines to simplify
the modeling process. If necessary, they can be approximated by other motifs with infinitesimal
curvature. We denote the set of all compositions constructed from these motifs as C.

Properties Apart from the composition, the semantic representation of a trajectory also involves
a set of properties. Ideally, the properties should be sufficient to visualize what each of the motifs
looks like and to constrain the space of trajectories with the corresponding semantic representation.
Following the original work, we include the coordinates of the transition points as they characterize
bounded motifs well. In contrast to their bounded counterparts, the unbounded motifs are not
described by their right transition point but by a set of motif properties. These, in turn, depend
on how we describe the unbounded motif. For instance, we could parameterize s++u as x(t) =
x(tend)2(t→tend)/B , where (tend, x(tend)) is the position of the last transition point. In that setting, B is
the property of s++u that describes the doubling time of x (x(t+B) = 2x(t)). In reality, choosing
a good parametrization with meaningful properties is challenging, and we discuss it in more detail
in Appendix D.2. The set of properties also includes the first derivative at the first transition point
(t0) and the first and the second derivative at the last transition point (tend). They are needed for
the trajectory predictor described in Section 5.2. Each composition c ↓ C may require a different
set of properties that we denote Pc. For instance, a trajectory x with cx = (s++b, s+→h) will have
px = (t0, t1, x(t0), x(t1), ẋ(t0), ẋ(t1), ẍ(t1), h, t1/2), where each (ti, x(ti)) is a transition point,
and (h, t1/2) are the properties of the unbounded motif (see Figure 4). We denote all possible sets of
properties as P , where P =

⋃
c↓C Pc.

We are finally ready to provide a formal definition of the semantic representation of a trajectory
x ↓ C2(T ) and a forecasting model F : R ↔ C2(T ). Given this formal definition of semantic
representation, we introduce our model, Semantic ODE, in the next section.

Definition 1. The semantic representation of a trajectory x ↓ C2(T ) is a pair (cx, px), where cx ↓ C
is the composition of x and px ↓ Pcx is the set of properties as specified by cx.

Definition 2. The semantic representation of F : R ↔ C2(T ) is a pair (CF , PF ) : R ↔ C ↗ P
defined as follows. CF : R ↔ C is called a composition map and it maps any initial condition x0 ↓ R
to a composition of the trajectory determined by its initial condition. Formally, CF (x0) = cF (x0).
PF : R ↔ P is called a property map, and it maps any initial condition x0 ↓ R to the properties of
the predicted trajectory CF (x0). Formally, PF (x0) = pF (x0).
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Method PK-random PK-real IHDP-based
In-domain Out-domain In-domain Out-domain In-domain Out-domain

SINDy 2.81 ± 1.04 3.88 ± 5.62 ! 106 ! 103 0.46 ± 0.12 2.32 ± 0.54
WSINDy 0.53 ± 0.21 7.96 ± 3.64 1.31 ± 0.50 5.21 ± 1.27 0.54 ± 0.04 25.16 ± 31.20
NeuralODE 0.50 ± 0.03 0.17 ± 0.08 0.54 ± 0.12 0.21 ± 0.13 0.39 ± 0.19 1.37 ± 1.15
XGBoost 0.40 ± 0.15 0.11 ± 0.04 0.43 ± 0.35 0.08 ± 0.02 0.36 ± 0.14 0.20 ± 0.09
PolyReg 0.27 ± 0.06 211.05 ± 82.49 0.34 ± 0.10 197.25 ± 69.20 0.05 ± 0.01 4.31 ± 1.83
SemanticATE 0.41 ± 0.28 0.04 ± 0.01 0.37 ± 0.29 0.02 ± 0.01 0.04 ± 0.02 0.02 ± 0.02

Table 1. Comparison of different ωtpaq estimation strategies. We report the average in-domain (t P r0, 1s) and out-domain (t P r1, 1.25s)
{MISE˘ std, computed over 5 seeds.

Method PK-random PK-real IHDP-based

Base 0.25 ± 0.09 0.22 ± 0.10 0.04 ± 0.02
Base + IB 0.25 ± 0.10 0.23 ± 0.09 0.06 ± 0.01
Base + IB + edits 0.23 ± 0.08 0.23 ± 0.09 0.08 ± 0.03

Table 2. Performance of the SemanticATE model with and without
modifications. We report the mean {MISE ˘ std, computed over
10 seeds.

6.3. Comparison to alternative estimation methods
We demonstrate that, apart from being transparent-by-
design, the benefit of using SemanticODE for the ωtpaq esti-
mation task lies in its good performance. Here, we compare
to alternative methods for modelling ωtpaq. We consider
standard ODE discovery algorithms, SINDy and WSINDy,
as implemented by the PySINDy library, and three black-
box approaches: NeuralODE, XGBoost and polynomial
regression. To make the ODE discovery methods suitable
for ωtpaq estimation setting, we fix the timing of the first
observation t0 across all individuals, and fit an additional
model to predict ωt0paq based on the dose a. ωt0paq is then
used as an initial condition for the trajectory. Because of the
requirements of the NeuralODE method, for this experiment
we rely on regular sampling of the outcomes.

Results. SemanticATE consistently outperforms the glass-
box methods (SINDy and WSINDy). While in some cases
the black box models outperform SemanticATE in-domain,
by imposing the necessary inductive biases (in this case, we
used the fact that the trajectory ends in a horizontal asymp-
tote), SemanticATE achieves incomparable out-domain per-
formance.

6.4. Insight: Efficient Trial Design
Although ωtpaq can be broadly applied, it holds particular
relevance and potential for RCTs. In early-phase clinical
trials – where patient safety is paramount and data is scarce
– precisely determining the optimal dosage is both crucial
and challenging. As methods employed in clinical trials
need to be characterised by sample efficiency, we analyse
the performance of SemanticATE as we change the number
of patients (see Appendix C.2) and as we change the number

of outcome measurements per patient, presented below.

Results. The results, presented in Figure Figure 4, show
that SemanticATE reaches optimal performance with only
15 outcome measurements. Further, we note that the perfor-
mance of the model improves significantly when irregular
(random) sampling of the measurement times is employed.
This insight can guide the design of the clinical trials.

7. Discussion and Future Work
Modelling the treatment effect as a smooth function of dose
and time through the use of SemanticODE reorients time-
varying causal inference toward interpretability and robust-
ness, positioning it for applications in high-stakes domains.
While in this preliminary paper we have assumed that the
data used for the estimation of ωtpaq comes from an RCT,
a natural direction for future work would be to consider
estimation from observational data, where non-random
assignment of the treatment dose or the measurement times
can lead to bias when not accounted for. Further, we believe
that introducing a notion of uncertainty quantification into
the predictions obtained from SemanticATE, for example
by quantifying the learned uncertainty of the property maps,
could further allow to make SemanticATE more suitable for
high-stake domains.
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