

Paper

DCBM: Data-efficient Visual Concept Bottleneck Models

Patrick Knab^{* 2} Sascha Marton² Christian Bartelt² Margret Keuper^{1,3} Katharina Prasse^{* 1}

> ¹Data and Web Science Group, University of Mannheim²Clausthal University of Technology ^{*}Equal contribution

> > ³Max-Planck-Institute for Informatics, Saarland Informatics Campus

Code

Motivation

- Concept Bottleneck Models (CBMs) learn a linear mapping from concept activations to classes that are inherently interpretable.
- CBMs main objectives:
 - → Meaningful human-interpretable concepts.
 - \rightarrow Concepts are sufficiently specific for the given task.
 - Efficient extraction of concepts from training images/classes.

No Description, No Supervision, No External Data.

• DCBMs perform within at most 6% of the linear probe for all datasets (9).

Qualitative & Quantitative Results

- Mask-RCNN concept proposals outperform SAM2 and GDINO.
- DCBM excels in domain- specific tasks (e.g., CUB).
- DCBM concepts are applicable in OOD settings.
- DCBMs achieve competitive performance using just 50 imgs/class as concept samples.

Table 1. Top-1 accuracy comparison across CBM models.

Model	CLIP VIT L/14				
	IMN	Places	CUB	Cif10	Cif100
Linear Probe ↑ Zero-Shot ↑	83.9* 75.3*	55.4 40.0	85.7 62.2	98.0* 96.2*	87.5* 77.9*

Extract Concepts from

YOUR Data.

Figure 1: Using vision foundation models, we use cropped image regions as concepts for CBM training. Based on few concept samples (50 imgs/class), DCBMs offer interpretability even for fine-grained classification.

Framework: Data-efficient CBMs

- Step 1: Concept proposals are created using **foundation models** for segmentation / detection.
- Step 2: Concepts are generated by **clustering concept proposals** to remove redundancies.

LF-CBM [3] ↑	-	49.4	80.1	97.2	83.9
LaBo [6] ↑	84.0*	-	-	97.8*	86.0*
CDM [4] ↑	83.4*	55.2*	-	95.9	82.2
DCLIP [2] ↑	75.0*	40.5*	63.5*	-	-
DN-CBM [5] ↑	83.6*	55.6*	-	98.1*	86.0*
DCBM-SAM2 (Ours) ↑	77.9	52.1	81.8	97.7	85.4
DCBM-GDINO (Ours) ↑	77.4	52.2	81.3	97.5	85.3
DCBM-MASK-RCNN (Ours) ↑	77.8	52.1	82.4	97.7	85.6

Figure 3. **CBM concept explanation comparison**. DCBM explanations contain no abstract concepts (e.g. fun, chlorinated water).

Table 2. Data-efficiency. DCBM concept proposals are generated from 50 imgs per class.

DN-CBM [5] DCBM-ImageNet

Step 3: **CBM is trained** to map concept activations to class labels.

Visual concepts are mapped to text within CLIP space. Step 4:

Figure 2. The **DCBM framework** generates concept proposals through foundation models (Step 1). These proposals are clustered (Step 2); the resulting concepts train a sparse CBM (Step 3). Image-text alignment then maps each visual concept to its textual counterpart (Step 4). Undesired concepts can be pruned after Step 2.

Dataset	CC3M	50 k images (50 imgs/class)
Mem	850 GB (256×256)	6 GB
No extra data	Х	\checkmark

Table 3. **OOD performance.** Error rate changes compared between visual CBMs (CLIP ViT-L/14) on ImageNet-R.

	IN-200	IN-R	Gap(%)
DN-CBM [5]↓	16.4	55.2	38.8
DCBM-SAM2 (Ours)↓	21.1	48.5	27.4
DCBM-GDINO (Ours)↓	22.6	47.2	24.6
DCBM-MASK-RCNN (Ours)↓	22.2	44.6	22.4

- [1] M. Bohle, M. Fritz, and B. Schiele. Convolutional dynamic alignment networks for interpretable classifications. In CVPR, 2021.
- [2] S. Menon and C. Vondrick. Visual classification via description from large language models. In ICLR, 2023
- [3] T. Oikarinen, S. Das, L. Nguyen, and L. Weng. Label-free concept bottleneck models. In *ICLR*, 2023.
- [4] K. P. Panousis, D. lenco, and D. Marcos. Sparse linear concept discovery models. In ICCV, 2023.
- [5] S. Rao, S. Mahajan, M. Böhle, and B. Schiele. Discover-then-name: Task-agnostic concept bottlenecks via automated concept discovery. In ECCV, 2024. First 2 authors contribute equally.
- [6] Y. Yang, A. Panagopoulou, S. Zhou, D. Jin, C. Callison-Burch, and M. Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable image classification. In CVPR, 2023

