DCBM: Data-efficient Visual Concept Bottleneck Models
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Motivation

o Concept Bottleneck Models (CBMs) learn a linear mapping from con-
cept activations to classes that are inherently interpretable.

e CBMs main objectives:
— Meaningful human-interpretable concepts.

— Concepts are sufficiently specific for the given task.

— Efficient extraction of concepts from training images/classes.
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Figure 1: Using vision foundation models, we use cropped
iImage regions as concepts for CBM training. Based on few
concept samples (50 imgs/class), DCBMs offer interpretability
even for fine-grained classification.

Framework: Data-efficient CBMs

Qualitative & Quantitative Results

Step 1: Concept proposals are created using foundation models for segmen-
tation / detection.

Step 2: Concepts are generated by clustering concept proposals to remove
redundancies.

Step 3: CBM is trained to map concept activations to class labels.

Step 4: Visual concepts are mapped to text within CLIP space.
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Figure 2. The DCBM framework generates concept proposals through
foundation models (Step 1). These proposals are clustered (Step 2); the
resulting concepts train a sparse CBM (Step 3). Image-text alignment
then maps each visual concept to its textual counterpart (Step 4).
Undesired concepts can be pruned after Step 2.

e DCBMs perform within at most 6% of the linear probe for all datasets

(9).
e Mask-RCNN concept proposals outperform SAM?2 and GDINO.
e DCBM excels in domain- specific tasks (e.g., CUB).
e DCBM concepts are applicable in OOD settings.

e DCBMs achieve competitive performance using just 50 imgs/class as
concept samples.

Table 1. Top-1 accuracy comparison across CBM models.

Model CLIPVIT L/14

IMN  Places CUB Cif10 Cif100
Linear Probe 1 83.9* 554 857 98.0° 87.57
/ero-Shot 1 /5.3% 40.0 622 962 779"
LF-CBM [3] - 494 801 972 839
LaBo [6] 1 84.0* - - 97.8% 86.0"
CDM 4] 1 83.4* 552 - 95.9 822
DCLIP [2] 1 /5.0 40.5" 635 - -
DN-CBM [5] 1 83.6" 55.6* - 981" 86.0"
DCBM-SAM2 (Ours) 1 /79 521 818 977 854
DCBM-GDINO (Ours) 1 /74 522 813 975 853

DCBM-MASK-RCNN (Ours) 1+ 77.8 521 824 97.7 8556

Figure 3. CBM concept explanation comparison. DCBM explanations
contain no abstract concepts (e.g. fun, chlorinated water).

Table 2. Data-efficiency. DCBM concept proposals are generated from
50 imgs per class.

DN-CBM [5] DCBM-ImageNet

50 k images
Dataset CC3M (50 imgs/class)
850 GB
Mem (256%256) > 0GB
No extra data X v

Table 3. OOD performance. Error rate changes compared between visual
CBMs (CLIP ViT-L/14) on ImageNet-R.

IN-200 IN-R Gap(%)

DN-CBM [5] | 164 552 388
DCBM-SAM?2 (Ours) | 211 485 27.4
DCBM-GDINO (Ours) | 226 472 24.6

DCBM-MASK-RCNN (Ours) | 222 44.6 224
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