intel Pruning the Paradox: How CLIP's Most Informative labs Heads Enhance Performance While Amplifying Bias

Avinash Madasu, Vasudev Lal, Phillip Howard

Overview

- Decomposition-based methods have been proposed recently for interpreting the role of attention heads in CLIP-like models
- These methods identify text labels corresponding to key concepts which characterize the function of individual attention heads
- However, relatively little attention has been played to the consistency of concepts learned by attention heads
- The relationship between attention head concept consistency, model performance, and bias has also not been examined
- In this work, we address these open questions by introducing the Concept Consistency Score (CCS) metric
- Pruning experiments show that high CCS heads are crucial for performance while also playing a key role in model bias

CCS Metric

- For each attention head h, we obtain 5 text descriptions T_i , $i \in \{1, ..., 5\}$ of its functionality using the existing TEXTSPAN algorithm
- We then use in-context learning with ChatGPT to infer a concept label C_h which represents the dominant concept captured by h
- We employ 3 SOTA LLMs in an LLM-as-a-judge approach to evaluate whether each text description aligns with C_h
- The CCS for head *h* is then computed as:

$$\operatorname{CCS}(h) = \sum_{i=1}^{5} \mathscr{W}[T_i \text{ aligns with } C_h]$$

where $\mathscr{V}[\cdot]$ is an indicator function returning 1 if T_i is consistent with C_h and 0 otherwise

High CCS $(CCS = 5)$	Moderate CCS $(CCS = 3)$	Low CCS ($CCS \leq 1$)	
L23.H11 ("People")	L23.H0 ("Material")	L21.H6 ("Professions")	
Playful siblings	Intrica wood carvingte	Photo taken in the Italian pizzerias	
A photo of a young person	Nighttime illumination	thrilling motorsport race	
Image with three people	Image with woven fabric design	Urban street fashion	
A photo of a woman	Image with shattered glass reflections	An image of a Animal Trainer	
A photo of a man	A photo of food	A leg	
L22.H10 ("Animals")	L11.H0 ("Locations")	L10.H6 ("Body parts")	
Image showing prairie grouse	Photo taken in Monument Valley	A leg	

Image showing prairie grouse Image with a donkey Image with a penguin Image with leopard print patterns detailed reptile close-up

Majestic animal An image of Andorra An image of Fiji Image showing prairie grouse colorful procession Contemplative monochrome portrait Graceful wings in motion Inviting reading nook

	Race		Gender	
Model	Original	High	Original	High
	Original	CCD	Original	
ViT-B-32-OpenAI	3.65	2.43	4.05	1.22
ViT-B-16-OpenAI	2.43	1.22	0.81	2.03
ViT-L-14-OpenAI	2.03	0.81	2.42	1.62

Table 8. Comparison of original and high-CCS soft-pruning on SocialCounterFactuals dataset for race and gender. We used MaxSkew (K=12 for race, K=4 for gender) as the metric.

Check out our paper on arXiv:

