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FOOTNOTES.
1Alzheimer’s Disease Neuroimaging Initiative: diagnosis change prediction (1,337 samples | 39 features).
2FICO Explainable ML Challenge: credit repayment prediction (10,549 | 23).
3World Health Organization: life expectancy classification (above/below dataset median) (2,864 | 18).
4National Health and Nutrition Examination Survey: hypertension prediction (10,000 | 42).

Overview
• Challenge: Common approaches to handling test-time missing 

values, such as imputation or adding missingness indicators, often 
reduce interpretability or introduce bias.

• Insight: If features are not necessary for predictions, models 
should not ask for them.

• Approach: We propose missingness-avoiding (MA) machine 
learning, a general framework for training models to minimize 
dependence on missing or imputed features.

• Models: We develop customized MA algorithms for decision trees, 
tree ensembles, and sparse linear models by regularizing their 
objectives to reduce reliance on missing values.

• Results: MA models match the predictive accuracy of baselines 
while significantly reducing reliance on missing data, enabling 
more interpretable and robust predictions.

The MA Learning Framework
• Setup: Supervised learning with input 𝑋 = 𝑋1, … , 𝑋𝑑

⊺ and label 
𝑌 ∈ 𝒴; missing values in 𝑋 are indicated by a mask 𝑀 ∈ 0,1 𝑑.

• Missingness reliance: A model ℎ ∈ ℋ has missingness reliance 
𝜌 ℎ, 𝑥 = 1 for input 𝑥 if computing ℎ 𝑥  requires any missing 
feature in 𝑥; otherwhise, 𝜌 ℎ, 𝑥 = 0.

• Goal: Learn a model that balances predictive loss and missingness 
reliance under the (fixed) distribution 𝑝 𝑋, 𝑀, 𝑌 :

min
ℎ∈ℋ

𝔼𝑝 𝐿 𝑌, ℎ 𝑋 + 𝛼 ∙ 𝔼𝑝 𝜌 ℎ, 𝑋 .

Conclusion
• MA learning enables models that rely less on (imputed) missing 

values without sacrificing predictive performance.
• Alternative definitions of 𝜌 ℎ, 𝑥  are possible; for example, the 

fraction of missing features used when computing ℎ 𝑥 .
• The trade-off parameter 𝛼 can be selected based on application-

specific needs.
• Open question: Can the MA framework be extended to other model 

classes, such as neural networks?

A Motivating Example
• Missing values are rarely missing completely at random—they are 

missing for a reason!
• Example (cognitive impairment (CI) classification): cognitive test 

scores are available only for older patients, and MRI scans 
primarily for those with low cognitive test scores.

• Tree-based MA models exploit these patterns in the data-
generating process to contextually avoid missing values.

MA Models 
MA trees and MA tree ensembles

• A tree ℎ has missingness reliance for input 𝑥 if there exists a node 
𝑢 along the decision path 𝜋ℎ 𝑥  where the split is based on a 
feature 𝑗𝑢 that is missing in 𝑥: 𝜌 ℎ, 𝑥 ≔ max

𝑢∈𝜋ℎ 𝑥
𝟏 𝑥𝑗𝑢 = na .

• For a tree ensemble 𝑒, we define 𝜌 𝑒, 𝑥 ≔ max
ℎ∈𝑒

𝜌 ℎ, 𝑥 .

• We regularize the node splitting criteria 𝐶, splitting a leaf node ℓ 
assigned training indices 𝑆ℓ by selecting the feature-threshold pair 
𝑗, 𝜏 that solves min

𝑗,𝜏
𝐶 ℓ, 𝒟; 𝑗, 𝜏 + 𝛼 ∙ σ𝑖:𝑆ℓ

𝜎𝑖𝑗
𝑆ℓ

𝟏 𝑥𝑖𝑗 = na .

• The feature weight 𝜎𝑖𝑗 ∈ 0,1  prevents double penalization in 
gradient boosted trees when a feature is reused in later trees.

MA sparse linear models

• For a linear model ℎ 𝑥 = 𝜃⊺𝑥, we define
𝜌 ℎ, 𝑥 ≔ max

𝑗
𝟏 𝜃 𝑗 > 0 𝟏 𝑥𝑗 = na .

• We solve min
𝜃

1
𝑛

σ𝑖=1
𝑛 𝐿 𝑦𝑖, 𝜃⊺𝑥𝑖 + σ𝑗=1

𝑑 𝜆 + 𝛼 ഥ𝑚𝑗 𝜃𝑗 .

A B C D
𝑥 1 0 na 0

A

C B

𝐴 > 0

𝐶 > 0 𝐵 > 0
na

A B C D
𝜃 5 1 0 3

Empirical Results
• We compare MA models to standard baselines on tabular datasets 

with varying sizes and levels of missingness (4 of 6 included here).
• MA models achieve comparable predictive performance while 

significantly reducing reliance on missing values.
• The trade-off parameter 𝛼 is selected via cross-validation.

DT   |   AUC =  0.74   |   𝜌 = 0.77 MA-DT   |   AUC =  0.73   |   𝜌 = 0.00

ADNI1 FICO2 LIFE3 NHANES4

Model AUC 𝜌 AUC 𝜌 AUC 𝜌 AUC 𝜌
LR 72.0 64.1 79.1 75.4 98.7 63.4 85.1 100.0
MA-LR 68.4 11.8 75.8 5.7 97.7 21.0 84.5 0.4
DT 72.7 11.7 73.8 5.7 92.2 18.3 82.3 0.1
MA-DT 74.1 0.1 73.8 5.7 89.7 12.3 82.4 0.0
RF 75.0 66.1 77.3 65.4 97.8 82.8 81.6 100.0
MA-RF 78.0 3.2 76.3 5.8 97.2 24.2 84.0 0.2
GBT 79.0 60.9 78.4 69.3 98.2 56.1 84.8 95.7
MA-GBT 78.5 1.6 75.6 5.9 95.9 16.5 83.2 0.3
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