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Overview

» Challenge: Common approaches to handling test-time missing
values, such as imputation or adding missingness indicators, often
reduce interpretability or introduce bias.

* Insight: If features are not necessary for predictions, models
should not ask for them.

» Approach: We propose missingness-avoiding (MA) machine
learning, a general framework for training models to minimize
dependence on missing or imputed features.

* Models: We develop customized MA algorithms for decision trees,
tree ensembles, and sparse linear models by regularizing their
objectives to reduce reliance on missing values.

* Results: MA models match the predictive accuracy of baselines
while significantly reducing reliance on missing data, enabling
more interpretable and robust predictions.

The MA Learning Framework

Setup: Supervised learning with input X = [X, ..., X;]" and label
Y € Y; missing values in X are indicated by a mask M € {0,1}¢.

Missingness reliance: A model h € H has missingness reliance
p(h,x) = 1 for input x if computing h(x) requires any missing
feature in x; otherwhise, p(h,x) = 0.

Goal: Learn a model that balances predictive loss and missingness
reliance under the (fixed) distribution p(X, M, Y):

min E, [L(Y,h(X))]| + a - E,[p(h, X)].

MA Models

MA trees and MA tree ensembles

A tree h has missingness reliance for input x if there exists a node
u along the decision path m;, (x) where the split is based on a

feature j, that is missing in x: p(h,x) := max l[xj = na].
uemp(x) u

For a tree ensemble e, we define p(e, x) = max p(h,x).
e

We regularize the node splitting criteria C, splitting a leaf node ¢
assigned training indices S, by selecting the feature-threshold pair

j, T that solves min C(¢,D;j,1) +a- s, S 1[xl] nal.

The feature weight o;; € {0,1} prevents double penalization in
gradient boosted trees when a feature is reused in later trees.
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MA sparse linear models

« For alinear model h(x) = 8'x, we define

p(h,x) == m]ax 1[|H|j > O] 1[xj = na].

» We solve mgin%Z?zl L(y;, 0'x;) + Y91 (2 + am;)|6;).

A Motivating Example

* Missing values are rarely missing completely at random—they are

missing for a reason!

Example (cognitive impairment (Cl) classification): cognitive test
scores are available only for older patients, and MRI scans
primarily for those with low cognitive test scores.

Tree-based MA models exploit these patterns in the data-
generating process to contextually avoid missing values.
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Empirical Results

We compare MA models to standard baselines on tabular datasets
with varying sizes and levels of missingness (4 of 6 included here).

MA models achieve comparable predictive performance while
significantly reducing reliance on missing values.

The trade-off parameter « is selected via cross-validation.
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Conclusion

MA learning enables models that rely less on (imputed) missing
values without sacrificing predictive performance.

Alternative definitions of p(h, x) are possible; for example, the
fraction of missing features used when computing h(x).

The trade-off parameter a can be selected based on application-

specific needs.

Open question: Can the MA framework be extended to other model
classes, such as neural networks?

FOOTNOTES.

1Alzheimer’s Disease Neuroimaging Initiative: diagnosis change prediction (1,337 samples | 39 features).
2FICO Explainable ML Challenge: credit repayment prediction (10,549 | 23).

3World Health Organization: life expectancy classification (above/below dataset median) (2,864 | 18).
“National Health and Nutrition Examination Survey: hypertension prediction (10,000 | 42).
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