The Geometry of Forgetting: Analyzing Machine Unlearning through Local Learning Coefficients

Aashiq Muhamed, Virginia Smith Carnegie Mellon University

MACHINE LEARNING Carnegie Mellon University

Carnegie Mellon University Language Technologies Institute

Motivation: Beyond Black-Box Unlearning Evaluation

Goal: Remove targeted knowledge D_{forget} while preserving capabilities D_{retain}

Current evaluation: Black-box metrics (performance on test sets)

Limitations:

- Cannot distinguish superficial vs. structural forgetting
- No insight into internal mechanisms or why utility is lost
- Limited assurance beyond specific test examples

Our Solution: Probe internal loss landscape geometry using refined **Local Learning Coefficients (rLLCs)**

Key Questions:

Can geometry reveal method-specific unlearning signatures? Can we measure internal selectivity patterns? Can we predict utility preservation from geometric structure?

Refined Local Learning Coefficients

LLC from Singular Learning Theory *Quantifies local effective dimensionality near w**

$$\hat{\lambda}(w^*) = n\beta \left[\mathbb{E}_{w \sim \pi(w|w^*,\beta,\gamma)} [\ell_n(w)] - \ell_n(w^*) \right]$$

where $\ell_n(w)$ is the empirical loss over n samples. β and γ are the inverse temperature and localization strength.

Intuition: Lower $\lambda \Rightarrow$ simpler local geometry (higher parameter degeneracy)

- Weight-refined LLC (wrLLC): Analysis restricted to parameter subset V
- Data-refined LLC (drLLC): Complexity relative to specific data distribution q'

SGLD Estimation: Monte-Carlo approximation over SGLD samples from Gibbs posterior

Experimental Setup

Models & Data

TinyStories: 1M, 8M, 28M parameters (8-layer Transformers) *D*_{retain}: TinyStories, *D*_{forget}: Harry Potter

Unlearning Methods

- Gradient Ascent (GA): Direct loss maximization on forget data
- Representation Misdirection (RMU): Noise injection at specific layer
- Negative Preference Optimization (NPO): Preference learning with negative signal

Global and layer-wise drLLCs calculated for D_{forget} , D_{retain} at all checkpoints New geometric metrics: Inter-layer variance σ , ranking stability ρ ,

New geometric metrics: Inter-layer variance σ, ranking stability ρ, selectivity index GSI

$$w_{t+1} \leftarrow w_t - \frac{\epsilon}{2} \left(n\beta \nabla_w \ell_m(w_t) + \gamma(w_t - w^*) \right) + \sqrt{\epsilon} \eta$$

Geometric Signatures Reveal Unlearning Mechanisms

Layer-wise Analysis Reveals Method-Specific Patterns

GA: Uniform LLC decreases across all layers → non-selective geometric damage

RMU: Selective geometric intervention:

- Low inter-layer LLC variance σ_forget (forces uniform degeneracy on forget data)
- \succ High σ _retain (preserves layer differentiation on retain data)
- Inter-layer variance σ quantifies geometric uniformity
- Model size amplifies geometric differences between methods

RMU's Geometric Fingerprint

RMU intervention at layer L_{noise} creates geometric discontinuity Localized perturbation modifies downstream network geometry

Algorithm 1 Detecting the RMU Injection Block via Largest Positive Jump

Require: Epoch-averaged layer-wise LLC profile LLC(1:L)**Ensure:** Estimated noise injection layer \hat{L}_{noise} . 1: Calculate transitions

1: Calculate transitions $\Delta(i) \leftarrow LLC(i+1) - LLC(i)$ (i = 1:L-1).2: Find index of largest positive jump: $\hat{L}_{noise} \leftarrow \arg \max_i \max(0, \Delta(i)).$

```
3: return \hat{L}_{noise}.
```


▲ Can identify intervention layer using the positive LLC jump

Quantifying Unlearning Quality

We introduce geometric metrics for unlearning evaluation.

Inter-Layer Variance (σ):

Lower σ_forget → uniform degeneracy (good) Higher σ_retain → preserved differentiation (good) Layer Ranking Stability (ρ): Structural preservation through unlearning-relearning cycle Geometric Selectivity Index (GSI): Relative geometric selectivity

- ✓ First geometric framework for unlearning evaluation
- Reveals method signatures invisible to black-box metrics
- Enables prediction of utility preservation from geometric patterns