ICML

Infernational Conference
On Machine Learning

NUS [Computing  Machine Learning from

Explanations
Data Privacy and Trustworthy A d:ionable{}
Machine Learning Research Lab Jiashu Tao, Reza Shokri Interpretability 0

Motivation Key Ideas

- Training on dataset that are imbalanced or not sufficiently - Curate (expert) explanations on a subset of training data that explain the
large tend to lead to unstable and overfitted models that rely reasons.
on spurious correlations. - Aligning model’s latent features with the given explanation masks via KL
- Standard training methods rely on output label agreement, divergence.
ignoring why models makes decisions, leading to - Alternating the optimization of the cross-entropy loss and the KL
untrustworthy models. divergence in a two-stage optimization scheme to ensure both label and
reasoning agreement.

Training ML Models from Explanations
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Datasets with Explanations Learning from Explanations Makes
Models Learn Faster and Better ...
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Injecting Spurious Correlations ... and More Robust to Spurious
Correlations
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This further proves the models

trained in our proposed way learns

(d) Spurious fox (e) Spurious triangle pointing up (f) Spurious Blue Grosbeak

the given rule from explanations




