

Machine Learning from Explanations

Data Privacy and Trustworthy Machine Learning Research Lab

Jiashu Tao, Reza Shokri

Motivation

- Training on dataset that are imbalanced or not sufficiently large tend to lead to **unstable** and **overfitted** models that rely on **spurious correlations**.
- Standard training methods rely on output label agreement, ignoring **why** models makes decisions, leading to untrustworthy models.

Key Ideas

- Curate (expert) explanations on a subset of training data that explain the reasons.
- Aligning model's latent features with the given explanation masks via KL divergence.
- Alternating the optimization of the cross-entropy loss and the KL divergence in a two-stage optimization scheme to ensure both label and reasoning agreement.

Training ML Models from Explanations

Algorithm 1 Two stags optimization	-
Algorithm 1 Two-stage optimization	_
Require: Input data x, model $h = c \circ m \circ f$ consists of features of the second sec	L—
ture extractor f , mapping layer m , and fully connected	1
lavore a target a avalanction o() learning rates a	

layers c, target y, explanation
$$e(\mathbf{x})$$
, learning rates η_1
and η_2 for cross entropy loss and feature map loss
1: $\mathcal{L}_{CE} \leftarrow -y \log(h(\mathbf{x})) - (1 - y) \log(1 - h(\mathbf{x}))$
2: $\theta_h \leftarrow \theta_h - \eta_1 \nabla_{\theta_h} \mathcal{L}_{CE}$
3: $\mathbf{x}' \leftarrow \mathbf{x} \otimes e(\mathbf{x})$
4: $\mathbf{x}'_{\text{feat}} \leftarrow \text{softmax}(f(\mathbf{x}'))$
5: $\mathbf{x}_{\text{feat}} \leftarrow \text{softmax}(m(f(\mathbf{x})))$
6: $\mathcal{L}_{\text{feat}} \leftarrow KL(\mathbf{x}'_{\text{feat}} \parallel \mathbf{x}_{\text{feat}})$
7: $\theta_m \leftarrow \theta_m - \eta_2 \nabla_{\theta_m} \mathcal{L}_{\text{feat}}$

Datasets with Explanations

Learning from Explanations Makes Models Learn Faster and Better ...

0.5

50

CUB-200 Bird

(b) An Indigo Bunting with an (c) A Blue Grosbeak explanation mask on its beak

(d) A Blue Grosbeak with an explanation mask on its beak

Injecting Spurious Correlations

(e) Spurious triangle pointing up

(d) Spurious fox

(f) Spurious Blue Grosbeak

Adding spurious patches/features to training data only

100100 Epoch Epoch Epoch No Expl — Grad Reg — Focal Loss — Ours Ours(Sparse) Even with 10% data with explanations ... and More Robust to Spurious **Correlations**

50

100

This further proves the models trained in our proposed way learns the given rule from explanations

0.5

50