EXPLANATION DESIGN IN STRATEGIC LEARNING: Sufficient Explanations that Induce Non-harmful Responses

Kiet Q.H. Vo¹, Siu Lun Chau², Masahiro Kato³, Yixin Wang⁴, Krikamol Muandet¹

AN EXPLANATION DESIGN PROBLEM

Here, the agent can <u>correctly anticipate</u> how changing \ddot{x} affects the prediction, then picks an update x_{\bullet} that <u>reliably improves</u> utility $u(x_{\bullet})$.

With only an explanation (i.e., partial information), the agent's update x_{\diamond} *might not improve* utility $u(x_{\diamond})$.

VES!

Q1: Can we ensure no reduction in agents' utilities?

Q2: Is there a sufficient class of explanations that guarantee this?

SETUP		KEY CONTRIBUTIONS		
0. Agent is realised: $(\ddot{x}_t, c_t) \sim P_{\ddot{X},C}$, where c_t is a cost function. 1. DM predicts agent's risk: $g(\ddot{x}_t)$. 2. DM gives explanation: $e_t := \sigma(g, \ddot{x}_t)$. 3. Agent modifies covariate: $x_t := \psi(\ddot{x}_t, e_t, c_t)$. 4. DM updates the prediction from $g(\ddot{x}_t)$ to $g(x_t)$. Agent's true utility: $u_t(g, x) := b(x) - c_t(\ddot{x}_t, x)$ $= -g(x) - c_t(\ddot{x}_t, x)$. Agent's non-harmful responses: $\nu_t = \{x \in \mathcal{X} : u_t(g, x) \ge u_t(g, \ddot{x}_t)\}.$		A <u>necessary condition</u> to ensure surrogate models do not mislead agents into self- harming actions. Action recommendation (AR)-based explanations (ARexes) make up <u>a sufficient</u> <u>class</u> that guarantees non- harmful agents' responses.		
SURROGATE MODELS	AR-BASED EXPLANATIONS		EXPERIMENTS	
• If it holds that, every cost function c_t induces a response $x_t \in v_t$, then $f_t \underline{must \ satisfy}$: $f_t(\ddot{x}_t) - f_t(x') \leq g(\ddot{x}_t) - g(x')$	 For any <u>arbitrary</u> explanation e' that induce x_• ∈ ν_t, There exists an ARex (x		Itility change 0.0 0.1	ARexes do not reduce agents' utilities.

