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Problem: Feature Redundancy in SAEs
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× Missing Feature

▶ Current SAEs suffer from high feature redundancy

▶ Only 85% of features are unique in standard Top-K SAEs
(1)

▶ Redundant features take up feature space capacity, preventing
capture of important semantic directions

▶ High interpretation scores on redundant features can bias
evaluation metrics

Example of a redundant feature: “A neuron about the [Beginning
Of the Sentence]” — this feature reflects a preprocessing artifact, not
a meaningful or interpretable concept.

Evaluation Metrics
1. Feature Coverage Score
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Measures fraction of feature bank directions covered by current SAE
features.
2. Semantic Volume

Semantic Volume = log det(ṼT Ṽ + ϵI) (2)

Quantifies diversity of feature explanation space using semantic em-
beddings.
3. Effective Rank

Effective Rank = exp

(
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)
(3)

Measures how evenly the feature space is distributed across semantic
dimensions.

Deduplication Results
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Methodology Overview
Standard SAE Training:

▶ Input: LLM layer activations x

▶ Encoder: z = TopK(ReLU(W1x))

▶ Decoder: x̂ = W2z

▶ Loss: L = ∥x− x̂∥22 + α · auxiliary
Our Denoising Training:

1. Apply dropout as input noising mechanism

2. Reconstruct original input from the perturbed input

L = ∥x− x̂∥22 + α · auxiliary + β∥x− ẑ∥22 (4)

Experimental Results
Setup: Pythia-70m (layer 3) and Pythia-160m (layer 8) models
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Key Findings:

▶ Improved Feature Diversity: Higher feature coverage,
semantic volume, and effective rank.

▶ Maintained Interpretation Quality: No degradation in
interpretation scores.

▶ Better Reconstruction Quality


