

medical_ data_ science_

Interpretable Diffusion Models with B-cos Networks

Nicola Bernold*, Moritz Vandenhirtz*, Alice Bizeul*, Julia E. Vogt* *Department of Computer Science, ETH Zürich

1 Motivation

- Text-to-image diffusion models generate impressive visuals but fail to fully capture all semantic details in the prompt.
- These failures are difficult to detect automatically, hindering error detection, prompt refinement, and image-text alignment.
- Post-hoc explainability methods can be unfaithful or insufficient for interpreting complex generative models.
- In this work, we propose an inherently interpretable architecture that offers faithful explanations of its generations.

2 Background: B-cos

 $f_{classic}(x; w, b) = wTx + b$ $f_{B-cos}(x; w) = wTx |cos(x,w)|^{B-1}$ with ||w|| = 1 $= \mathbf{w}(\mathbf{x})^{\mathrm{T}}\mathbf{x}$

- B-cos neuron as drop-in replacement for classical neurons.
- Only produces significant output if weights are aligned to input
- Summary of a deep B-cos network given by a dynamically Proble linear transformation: $W(x)_{1 \rightarrow L} = W_1(x) \dots W_L(x)$

3 Method

Goal: Faithful explanation by dynamically linear model

Remove all bias terms

 \rightarrow NN(x) = W(x)_{1 \rightarrow L}x

- Deterministic DDIM sampling
- Interpret Cross Attention as dynamically linear

4 Generative Performance

B-cos networks can produce similar results as vanilla networks. Predicting x₀ decreases the quality but omitting the CLIP encoder even slightly improves the FID score

5 Completeness of Explanation

Despite the bias terms, the reconstruction renormalized using the redundant channels is nearly perfect - the summary thus captures the complete diffusion process and can be used for interpretation.

6 Relevance Scores

The relevance score can be used to check prompt adherence.

Semantically meaningful tokens are typically more relevant.

	penguin	and	а	shark
	Token penguin		Mean-Relevance	
			17.1%	
	cat		15.6%	
	background		5.15%	
	or		1.87%	
	stock		1.26%	

7 Conclusion

Cross-Att(X, Y; Q, K, V) = softmax $\left(XQK^TY^T/\sqrt{d_k}\right)YV$ = A(X, Y)YV

Encode color

Enc(r, g, b) = (r, g, b, 1 - r, 1 - g, 1 - b)

At inference

Visualize reconstructions via

 $R_{\text{normalized}}(x) = R_{rqb}(x) / (R_{rqb}(x) + R_{1-rqb}(x))$

- Since NN(x) = W(x)_{1 \rightarrow L}x, the i-th row of W(x) captures all contributions of token x_i to the output, and W_{i,i} x_i corresponds to the contribution of x_i to the j-th output.
- As such, we define the normalized relevance score which faithfully quantifies the contribution of each token to the output

 $S_i(x) = \frac{\left|\sum_{h,w,c} W(x)_i x_i\right|}{\sum_j \left|\sum_{h,w,c} W(x)_j x_j\right|}$

- B-cos networks can quantify the relevance and contribution of each token to the generation.
- Explanations faithfully capture alignment of image and prompt.
- This can provide actionable insights with respect to the promptadherence of generations
- Next steps: Improving generations and pixel-level attribution

References

- Böhle, Moritz, Mario Fritz, and Bernt Schiele. "B-cos networks: Alignment is all we need for interpretability." CVPR 2022
- Arya, Shreyash, Sukrut Rao, Moritz Böhle, and Bernt Schiele. "B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable." NeurIPS 2025