
Goal: Faithful explanation by dynamically linear model
• Remove all bias terms
• Deterministic DDIM sampling

• Interpret Cross Attention as dynamically linear

• Encode color

At inference

• Visualize reconstructions via

• Since NN(x) = W(x)1àLx, the i-th row of W(x) captures all 
contributions of token xi to the output, and Wi,j xi corresponds to 
the contribution of xi to the j-th output.

• As such, we define the normalized relevance score which 
faithfully quantifies the contribution of each token to the output
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• Text-to-image diffusion models generate impressive visuals but 
fail to fully capture all semantic details in the prompt.

• These failures are difficult to detect automatically, hindering error 
detection, prompt refinement, and image-text alignment.

• Post-hoc explainability methods can be unfaithful or insufficient 
for interpreting complex generative models.

• In this work, we propose an inherently interpretable architecture 
that offers faithful explanations of its generations.

• B-cos networks can quantify the relevance and contribution of 
each token to the generation.

• Explanations faithfully capture alignment of image and prompt.

• This can provide actionable insights with respect to the prompt-
adherence of generations

• Next steps: Improving generations and pixel-level attribution

2 Background: B-cos

4 Generative Performance

7 Conclusion
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1 Motivation

5 Completeness of Explanation

6 Relevance Scores

3 Method

fclassic(x;	w,b)	=	wTx	+	b
fB−cos(x;	w)	=	wTx	|cos(x,w)|B−1	with	||w||=1
	 =	w(x)T	x
• B-cos neuron as drop-in replacement for classical neurons.
• Only produces significant output if weights are aligned to input
• Summary of a deep B-cos 

network given by a dynamically
linear transformation:
W(x)1àL = W1(x)…WL(x)

è NN(x) = W(x)1àLx

Despite the bias terms, the reconstruction renormalized using the 
redundant channels is nearly perfect – the summary thus captures 
the complete diffusion process and can be used for interpretation.

Token Mean-Relevance

penguin 17.1%

cat 15.6%

background 5.15%

or 1.87%

stock 1.26%

The relevance score can 
be used to check prompt 
adherence.

Semantically meaningful 
tokens are typically more 
relevant.

B-cos networks can produce similar results as vanilla networks. 
Predicting x0 decreases the quality but omitting the CLIP encoder 
even slightly improves the FID score
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resembles noise.

Normalizing the reconstruction is not really possible, as the first three channels and the last three channels cancel each other
out. When predicting ωt (noise with zero-mean and unit-variance), the corresponding channels should add up to zero, not
one. The transformation such that the images are encoded with values between 0 and 1 consists of biases that cannot be
captured by the summary. Note that one could predict µ + εωt. However, we empirically found that the denoising and
sampling quality suffers from such a design choice.

Nevertheless, the reconstruction itself is in fact not entirely random noise. If we add the noise xT with some adjustment of
the brightness, the shape of the penguin is vaguely visible. This is a consequence of the summary essentially capturing
the computations up to the biases – and one of those biases is the input xT . So the summary does contain some of the
relevant computations. However, when inspecting the beak and feet of the penguin, they are orange in the sample but appear
bright blue in the reconstruction. So even when compensating for the input bias, there are still other biases that affect the
computation beyond some noisiness of the reconstruction. And hence, insights gained when inspecting this model with the
help of this dynamic linear summary need to be treated with caution.

For this model, CLIP is used in the same way as in Stable Diffusion. So on the one hand, there are the tokes SOS and EOS

that mark the start and the end of the sequence. On the other hand, the sequence is padded with padding tokens, such that
there is a total of 77 tokens. These extra tokens can also contribute to the output. And the attribution shows that the EOS

token contributes significantly more to the dynamic linear computations than the actual prompt tokens. This is not only
the case for this specific example but something we generally observed. We argue that this is not too surprising given that
the EOS token was trained to be a representation for the entire sequence. All other token representations were not directly
optimized during training. The 70 padding tokens do not contribute much individually but together they still make up
roughly 45% of the dynamic linear computation. So a lot of those computations cannot be attributed to a specific, interesting
token. During sampling, the neural network is expected to do two things: it should denoise the input and it should generate
something that fits to prompt. The denoising itself is not necessarily dependent on interesting tokens and hence, these
attributions could suggest that roughly fifty percent of the computations solely focus on denoising.

Though, once again, the summary of B-cos Clip eps captures significantly less computations compared to the models
predicting x0 and the B-cos network does not provide any insights into the interplay of biases, tokens and outputs.

E.2. B-cos x0

For Figure 6 we used the same seed but slightly different prompts to generate four images in 25 timesteps. As the diffusion
trajectory is very unstable, the relationship between token relevance and changes in the images is not immediately clear.
However, these samples show that replacing the highly relevant token flamingo with pizza changes the picture completely.

It also appears that the model does not really make use of the concepts small and big. Potentially, because it does not
understand the objects they describe well enough or because size is relative. Replacing small with big does lead to minor,
but noticeable, colour changes while the structure remains the same.

The token relevance of fluffy is extremely low for many of these images. This suggests that this word is relatively consistently
neglected by the model.

Note that a high token relevance does not mean that the model understands a concept correctly. The model may for example
associate the colour purple with the token flamingo and hence there is a purple cloud-like structure in the top left corner.

In Table 1 we only show a small selection of tokens. Table 2 shows the 100 tokens which occur the most often without
duplicates in a caption. Note that a word does not necessarily correspond to a single token. For example, the word flamingos

is split into the two tokens flamin and gos. The results show that nouns tend to be more relevant than abstract symbols,
articles, conjunctions, and similar words. Words such as stock or free show up in many captions but typically describe the
license and not the image itself. Hence, it makes sense that the model does not attribute a lot of relevance to such words.
The SOS, EOS and padding tokens are masked so they cannot contribute to the output. Thus, they also correctly receive
zero attribution by the model. With a Pearson correlation coefficient of →0.145, there also does not appear to be a simple
relationship between the number of occurrences and the relevance of a token. This is consistent with our belief that some
words are more important than others.

Cross-Att(X,Y ;Q,K, V ) = softmax
(
XQKTY T /

√
dk

)
Y V = A (X,Y )Y V
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In order to have the input-alignment guarantee, we need
non-negligible outputs. Moreover, the output magnitude of
B-cos networks is bounded by the input magnitude. Also,
with the aforementioned encoding, the cosine similarity can-
not distinguish between dark and bright colors. Thus, we
propose to use the following encoding for input and target,
which is the same encoding as used for the inputs of B-cos
vision classifiers:

Enc(r, g, b) = (r, g, b, 1→ r, 1→ g, 1→ b) (5)

As the output of the backbone is fed into the input again and
as we want to avoid introducing new biases, having the same
input and target encoding is the obvious choice. However,
such an encoding only works if xt→1 or x0 is predicted
directly. Many networks are trained to predict ωt – the noise
that was added to the image x0 to obtain the noisy sample xt.
To encode the noise in the above way, we employ a diffusion
process with a noise mean and variance of 0.5. The details
can be found in Appendix B. We have experimented with
predicting the noise but empirically found that predicting
x0 is the only option with promising denoising capabilities.

The relationship between the prompt and the generated im-
age is of particular interest. Stable Diffusion conditions the
U-Net on the token embeddings of a CLIP encoder. Because
of cross-attention in CLIP, these tokens may capture con-
textual information beyond their associated subword units.
To alleviate this issue, we use the subword embeddings of
CLIP directly and mask all padding tokens, including the
SOS and EOS tokens. This way, only tokens with a semantic
meaning can contribute to the output and the explanations
do not need to be disentangled.

Similarly, Stable Diffusion also employs a variational au-
toencoder (VAE) to project the images onto a latent space
in which the denoising is performed. Instead of separately
training a B-cos VAE, we omit the VAE and directly per-
form pixel-space diffusion on a lower 64↑64 resolution.
Our setup thus focuses on integrating B-cos networks into a
diffusion model’s backbone: the model’s UNet.

3.4. Interpretability and Explanations

Given an encoded prompt x and the model summary W(x)
of some sampling run, one can use that model summary to
reconstruct the model output together with the prompt x:

R(x) = Rrgb(x) || R1→rgb(x) = W (x)x (6)

This reconstruction R(x) ↓ RH↑W↑C has C = 6 chan-
nels. As the diffusion models contain biases, the summary
does not capture all model computations and hence R(x)
is not equal to the original model output. However, the six
channels contain redundant information. Hence, the model
output and the reconstruction can be split into the two im-
ages with the three channels corresponding to (r, g, b) and

(1→ r, 1→ g, 1→ b), respectively. The sum of each channel
in Rrgb and R1→rgb should thus add up to one. To enforce
this and potentially recover information lost due to biases,
the normalized reconstruction can be computed as follows:

Rnormalized(x) = Rrgb(x)/(Rrgb(x) +R1→rgb(x)) (7)

These reconstructions allow us to gain insights into the
information loss due to the biases. The difference between
the normalized reconstructions and the model output being
small implies that the model summary captures the relevant
model computations.

To compute the attribution of the i-th prompt token of a
generated sample, we use its embedding xi and the i-th
row in W (x) to compute the contributions to each pixel
and channels, then aggregate those and normalize the score
across all tokens. We refer to this measurement as the
relevance score:

Si(x) =
|
∑

h,w,c
W (x)ixi|∑

j
|
∑

h,w,c
W (x)jxj |

(8)

Computing W (x) is extremely computationally expensive.
Storing it during the forward pass is not trivially possible
without obtaining prohibitively large tensors. Thus, back-
ward passes are typically used to compute the summary for
the interesting outputs. In our case, that’s not a single class
logit but a full image with six channels. However, to com-
pute the attribution score, W (x) does not need to be fully
materialized. The summation over the pixels and channels
can be fused into its computation. That is, the attributions
for all tokens can be computed in a single backward pass.

4. Experiments
4.1. Experimental Setup

For our experiments, we modified Stable Diffusion 2.1
(Rombach et al., 2022) to use a B-cos U-Net with the em-
beddings of the pretrained CLIP model as described in Sec-
tion 3.3. The models were trained for one million steps
on a subset of LAION-2B-en-aesthetics (Schuhmann et al.,
2022) focusing on five selected objects: banana, cat, goat,
flamingo and penguin. We included 20’000 image-caption
pairs for each object. We refer to our model as B-cos x0.
Further details are specified in Appendices C and D.

As baseline we also train Vanilla Stable Diffusion with the
same settings. We also include B-cos Clip eps and B-cos

Clip x0, which use the frozen Clip Encoder of Stable Dif-
fusion 2.1 and are trained to predict the reparameterized
zero-mean unit-variance noise and the target x0, respec-
tively, to provide a comparison of the sample quality. For a
quantitative comparison, we compute the FID score (Heusel
et al., 2017) using 100’000 samples.
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