Rethinking Crowd-Sourced Evaluation
of Neuron Explanations

Tuomas Oikarinen, Ge Yan, Akshay Kulkarni, Tsui-Wei (Lily) Weng - UCSD

GitHub: https://github.com/Trustworthy-ML-Lab/efficient_neuron_eval
Paper: https://arxiv.org/abs/2506.07985

Motivation: Existing Crowdsourced studies of neuron

explanations only evaluate on highly activating inputs

> Only evaluating highly activating inputs is equivalent to only

measuring Recall, and ignores whether the concept is present

on low activating inputs

> We conduct the first study with a principled metric, Pearson’s

correlation coefficient

> Evaluating correlation can be very expensive due to need to

annotate all inputs and rater noise

- We propose efficient sampling and error correction
strategies to reduce total cost ~60x
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Our Contributions:

1st crowdsourced study measuring correlation coefficient +

~60x cost reduction by efficient sampling and error correction

Neuron k

(i) Collect neuron activations

[ak]l 0.5
( / 1.3 \

(a2 (iii) Compute score

Ak = : - p (ak?ct)

A 4

\[akj N \—5-6) 4

T ——

Q1: How to select annotation (sec 3.1)
subset S to reduce cost?
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Contribution 1: Importance Sampling

Rating every input for each concept is not feasible

Contribution 2: Bayes with SigLIP prior

Need to sample a subset of inputs to show raters

We choose samples with Importance sampling (with correction) from 100

distribution q that approximates the theoretical optimum

Crowdsourced ratings are noisy -> Multiple Raters per input

We show we can get more accurate results by using Bayes rule to
estimate P(c | ry, r, ...) over typical methods like majority vote
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Combined these, we can reduce study cost

from $45.000 to

with same accuracy!
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» \We evaluated explanations generated by best existing automated interpretability
methods for 100 random neurons on two vision different networks

» Linear Explanation LE(SigLIP) performed the best on both Networks studied, even
when restricted to produce length 1 explanations

» Notable LE significantly outperformed recent generative model-based methods
MAIA and DnD

= Overall correlations relatively low, highlighting the need for more complex
explanations or more interpretable architectures
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User Interface

Study information
» Click to View Study Information

[0 By checking this box | indicate that | am at least 18 years old, have read the study information above, and agree to participate in this research study.

Task

Select all the images that contain: ground beetle.

If you do not know what ground beetle means, use a tool like Google Image search to find out.
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