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TL;DR

Existing methods in AI safety are fragmented and address 
complimentary aspects of model behavior. Comprehensive 
safety of models necessitates composition of diverse tools 
and techniques across multiple functional dimensions — a 
paradigm we term as Composite AI Safety.

     

To facilitate this methodology, we introduce BlueGlass, an 
open source framework providing a scalable, efficient and 
unified interface for integrating and orchestrating safety 
workflows. We demonstrate the capabilities of this framework 
through three case studies spanning across varying model 
classes, datasets, tasks and safety approaches.

Key features of BlueGlass 

 Asset (models, datasets, evals) pooling from various sources, such as HuggingFace, 
Detectron2, MMDetection, etc, and access through a unified interface defined via 
lightweight adaptation files

 Comprehensive feature management system supporting collection of model internals, 
caching strategies, efficient storage, loading and processing. Provides an interface 
(called recorders, patchers) for model-, task- and framework-agnostic model internals 
handling

 Modular and standardized interfaces across components enabling flexibility, 
extensibility and composability. Scalable (CPU to multi-GPU) and efficient (in memory, 
time) processing

 Common analysis, interpretability and explainability tools, along with presets, recipes 
and pre-extracted model internals provided via remote feature repository (BlueLens). 
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Case Study #2 Case Study #3Approximation Probes for Layer Dynamics Sparse Autoencoders for Concept Discovery

How do vision-language models adapt their mechanism to perform zero-
shot open-world object detection? 

Do vision-language models learn human-interpretable concepts for object detection? And 

if so, what concepts do they learn?

Model Attributes Funny Birds OD ECPersons VALERIE22 BDD100k COCO LVIS

Type Box Size FPS AP AR AP AR AP AR AP AR AP AR AP AR

YOLO v8 D ✓ 0.068 71.5 85.2 95.4 1.1 31.1 1.1 38.5 8.8 19.4 24.9 42.6 7.1 14.1

Grounding DINO C ✓ 0.172 8.3 87.3 91.2 22.1 46.5 15.2 50.8 23.8 59.4 48.5 77.2 14.2 53.2

GenerateU G ✓ 0.896 1.5 65.1 92.9 2.4 34.6 2.1 42.6 13.1 37.7 32.1 66.1 25.5 40.7

Florence 2 Large G × 0.822 2.9 87.9 93.0 1.6 30.7 1.3 43.5 11.7 25.5 40.1 55.2 2.3 0.3

Gemini 2.0 Flash G × † † 32.2 50.0 1.3 21.3 0.1 15.7 0.9 3.4 19.9 32.8 4.9 7.2

DINO-DETR (SFT) D ✓ 0.218 4.8 99.6 99.9 66.4 76.0 37.4 70.2 35.9 55.6 58.3 78.6 20.8 38.7

Case Study #1

Distributional Evaluations

Can vision-language models 
perform object detection? If so, 
what are their failure modes and 
how do they compare against 
traditional vision-only detectors?

 Method - We perform a comprehensive evaluation of vision-language models (VLMs) representing varying architectural classes and compare them against zero-shot 
vision-only baseline and a fine tuned vision-only oracle via a novel, label matching evaluator, that handles the open-ended predictions of VLMs and mapping of baseline

 Insight   - Localization-aided VLMs exhibit decent generalization across data domains and operational scenarios. While these VLMs outperform all other models in open-
vocabulary setting, fine-tuned vision-only models still remain dominant. VLMs need geometric priors for improved object detection, particularly for dense cases.

 Method  - We propose approximation probes, a variant of linear probes that 
approximate the final model prediction, measuring concept resolution

 Insight 1 - Concept evolution trajectories demonstrate a phase transition 
across layers, partitioning the evolution into three phases. This can be 
attributed to hierarchical feature learning and composition of concepts

 Insight 2 - As both VLM and vision-only model demonstrate similar layer 
dynamics, the open-ended zero-shot capabilities are a consequence of 
the representational alignment between vision and language components.

 Method  - We use TopK sparse autoencoder to decompose the residual stream features 
from layer 4 of Grounding DINO, and utilize the dataset attribution method to label them

 Insight 1 - Sparse autoencoders find human-interpretable concepts in VLMs for object 
detection across a wide spectrum of concept hierarchy, from object parts to abstract 
concepts such outdoor activities

 Insight 2 - Surprisingly, the analysis also revealed several concepts which are 
responsible for hidden failures of model such as spurious correlations. These 
concepts can be used to correct and mitigate model failures. 


