
Truthful or Fabricated? Using Causal Attribution to

Mitigate Reward Hacking in Explanations
Pedro Ferreira*, Wilker Aziz, Ivan Titov

*p.m.ferreira@uva.nl

Motivation
� Chain-of-thought (CoT) explanations are used to inspect the decision process of large language models (LLMs). However, the alignment phase that aligns LLMs

outputs to match human preferences,might inadvertently reduce the faithfulness of these explanations.

� We posit this occurs because the reward model cannot verify the consistency between the LLM’s reasoning and its explanation. As a result, the model may

‘‘hack’’ the reward scores by tailoring explanations to maximize scores rather than to reflect its true reasoning – we refer to this as ‘‘Chain-of-Thought Hacking’’.

� We design two setups, in which: (i) the reward model exhibits a preference for a specific answer, (ii) the input includes a cue correlated with that answer, and (iii)

an instruction discourages the LLM from using that cue. This enables a form of cheating, where the cue is used but not acknowledged in the explanation.
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� Research Question: Can we address CoT hacking by designing a counterfactual-based interpretability signal that augments the reward model input?

Experimental Setting

� Math Book (From AQUA-RAT):

– Query Ex.: ‘‘When I was 2 years old,

my brother was half my age. Now

I am 60 years old, how old is my

brother?’’

– Cue: Solution to the query

– CF: Replace the solution to the

query by a solution to another

problem

� BiasQA (FromWinoGenerated):

– Query Ex.: ‘‘The client called the

toolmaker after hearing a good re-

view of <__> service and products’’

– Cue: Profession

– CF: Replace profession by ‘person’

� LLM: Llama-3.1-8B-IT

� Reward Models:

– Skywork-Reward-Llama-3.1-8B-

v0.2 (SK-LLAMA-8B)

– Skywork-Reward-Gemma-2-27B-

v0.2 (SK-GEMMA-27B)

� Reward-guiding Methods:

– Best-of-N

– Direct Preference Optimization

� Evaluation:

– Accuracy (Acc; Math Book) and

Stereotype Rate (SR; BiasQA)

– Acknowledgment Rate (AR)

Reward Models Drive CoT Hacking
� Base model exploits cue when instructed not to do so (u vs l)

� BoN shows reward model (u) increasing Acc/SR at a larger rate than AR

� DPO increases the gap between Acc/SR and AR in 7 of 8 comparisons (u u)

Counterfactual-Augmented Reward Models
� Idea: Use counterfactual (CF) inputs to identify examples that use the input

cue and augment the reward model input in those cases

� Two augmentation strategies:

RMD : pred(y) 6= pred(yCF ) or RMC : pred(y) 6= pred(yCF ) ∧ pred(y) = ŷ

� Both RMD and RMC help address CoT hacking:

– RMD and RMC both decrease the gap to the model with CF input

– Overall, RMC performs better than RMD

– RMC also consistently reduces the number of unfaithful explanations
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Model Reward Model Greedy Maj@16 Greedy Maj@16

Base - 24.8 ± 0.0 27.2 ± 1.5 13.7 ± 0.0 14.1 ± 1.5

DPO + RM
SK-LLAMA-8B

25.7 ± 0.5 34.0 ± 0.7 13.2 ± 0.8 9.8 ± 1.3

DPO + RMD 24.5 ± 1.9 33.6 ± 1.2 8.0 ± 0.8 2.4 ± 0.6

DPO + RMC 22.8 ± 0.6 31.6 ± 3.5 7.4 ± 1.8 3.9 ± 0.8

DPO + RM
SK-GEMMA-27B

27.2 ± 1.0 33.9 ± 0.9 20.8 ± 1.2 25.0 ± 1.7

DPO + RMD 28.3 ± 3.9 35.2 ± 2.4 10.7 ± 0.5 7.5 ± 2.2

DPO + RMC 23.6 ± 0.6 32.5 ± 0.5 12.3 ± 0.7 11.7 ± 3.6

Conclusion
� Augmenting the reward model input with a counterfactual-based inter-

pretability signal reduces chain-of-thought hacking


