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Motivation

Chain-of-thought (CoT) explanations are used to inspect the decision process of large language models (LLMs). However, the alignment phase that aligns LLMs
outputs to match human preferences, might inadvertently reduce the faithfulness of these explanations.

B We posit this occurs because the reward model cannot verify the consistency between the LLM’s reasoning and its explanation. As a result, the model may
“hack” the reward scores by tailoring explanations to maximize scores rather than to reflect its true reasoning — we refer to this as ““Chain-of-Thought Hacking” .

B We design two setups, in which: (i) the reward model exhibits a preference for a specific answer, (ii) the input includes a cue correlated with that answer, and (iii)
an instruction discourages the LLM from using that cue. This enables a form of cheating, where the cue is used but not acknowledged in the explanation.
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B Research Question: Can we address CoT hacking by designing a counterfactual-based interpretability signal that augments the reward model input?
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Both RMp and RM ¢ help address CoT hacking: Conclusion

RMp and RM¢ both decrease the gap to the model with CF input
B Augmenting the reward model input with a counterfactual-based inter-

pretability signal reduces chain-of-thought hacking

Overall, RM ¢ performs better than RMp

RM ¢ also consistently reduces the number of unfaithful explanations



